
TRIBHUVAN UNIVERSITY

INSTITUTE OF ENGINEERING

PULCHOWK CAMPUS

B-03-BME-2017/2022

Optimal Trajectory Generation for Autonomous Navigation of Wheeled Robots

by:

Ankit Kharel (074BME604)

Anusha Acharya (074BME607)

Nitesh Subedi (074BME624)

Prajwal Koirala (074BME627)

A PROJECT REPORT

SUBMITTED TO THE DEPARTMENT OF MECHANICAL AND AEROSPACE

ENGINEERING IN PARTIAL FULFILLMENT OF THE REQUIREMENT FOR

THE DEGREE OF BACHELOR IN MECHANICAL ENGINEERING

DEPARTMENT OF MECHANICAL AND AEROSPACE ENGINEERING

LALITPUR, NEPAL

FEBRUARY, 2022

COPYRIGHT

The author has agreed that the library, Department of Mechanical and Aerospace Engi-

neering, Pulchowk Campus, Institute of Engineering maymake this project report freely

available for inspection. Moreover, the author has agreed that permission for extensive

copying of this project report for scholarly purpose may be granted by the professor(s)

who supervised the work recorded herein or, in their absence, by the Head of the De-

partment wherein the thesis was done. It is understood that the recognition will be given

to the author of this project report and to the Department of Mechanical Engineering,

Pulchowk Campus, Institute of Engineering in any use of the material of this project

report. Copying or publication or the other use of this project report for financial gain

without approval of the Department of Mechanical and Aerospace Engineering, Pul-

chowk Campus, Institute of Engineering and author’s written permission is prohibited.

Request for permission to copy or to make any other use of this project report in whole

or in part should be addressed to:

Head of Department

Department of Mechanical and Aerospace Engineering

Institute of Engineering, Pulchowk Campus

Lalitpur, Nepal

ii

TRIBHUWAN UNIVERSITY

INSTITUTE OF ENGINEERING

PULCHOWK CAMPUS

DEPARTMENT OF MECHANICAL AND AEROSPACE ENGINEERING

The undersigned certify that they have read, and recommended to the Institute of Engi-

neering for acceptance, a project report entitled “ Optimal Trajectory Generation for Au-

tonomous Navigation ofWheeled Robots” submitted byAnkit Kharel, Anusha Acharya,

Nitesh Subedi, and Prajwal Koirala in partial fulfillment of the requirements for the de-

gree of Bachelor of Mechanical Engineering.

Supervisor, Dr. Mahesh Chandra Lunitel

Professor

Department of Mechanical and Aerospace Engineering

Supervisor, Dr. Sanjeev Maharjan

Assistant Professor

Department of Mechanical and Aerospace Engineering

External Examiner, Dr. Krishna Prasad Shrestha

Assistant Professor

Kathmandu University

Committee Chairperson, Surya Parsad Adhikari, PhD

Associate Professor and Head

Department of Mechanical and Aerospace Engineering

2022/03/06

Date

iii

ABSTRACT

Wheeled robots are propelled using motorized wheels for navigation. The trajectory

generation problem refers to the determination of a set of control inputs to achieve the

desired motion of the robot. The project aims to develop a feedback system that plans

the trajectory of the wheeled robot taking account of the current state and environment.

The trajectory generator needs to lead the robot toward the goal location while avoiding

the obstacles and fulfilling other dynamic and static constraints. To design the trajectory

generator, an optimal control problem is formulated for the wheeled robot. The optimal

control problem is transcribed into a non-linear programming problem and solved in

terms of state-control pair at each time step. This method of controlling the robot for a

finite-length time horizon using the real-time information updates is also called Model

Predictive Control (MPC). To accomplish the project objectives, the proposed trajectory

generation system is first developed in the numeric computing environment MATLAB.

It is then reimplemented in Python to test against Turtlebot3 Waffle in Gazebo envi-

ronment using Robot Operating System (ROS). Finally, it is used in an actual robot

with the necessary hardware and software. Results obtained in the simulated environ-

ment for a number of cases are validated using the physical implementation of the robot.

Keywords: Robots, Navigation, Trajectory Generation, Optimal Control, Non-linear

Programming, Model Predictive Control, Simulation, ROS

iv

ACKNOWLEDGEMENT

First of all, we would like to express our deepest appreciation to the Department of Me-

chanical and Aerospace Engineering for providing us with the opportunity to undertake

this project. We are highly indebted to the unwavering supervision and guidance of our

supervisors Prof. Dr. Mahesh Chandra Luintel and Asst. Prof. Dr. Sanjeev Maharjan.

Fabrication of this project would not have been possible without the cooperation and

financial support from NSDevil. We express our sincere gratitude to the senior manager

Mr. Geoffrey Tegny and manager Er. Abhinab Acharya of the NSD-Robo project for

facilitating this completion of this project.

We are extremely grateful to the Robotics Club, Pulchowk Campus for providing some

necessary parts and equipments to fabricate this project. We acknowledge the assistance

ofMr. Sabin Shrestha and all other members of the club for sharing the knowledge about

electronic components and helping to design the circuit board.

Wewould like to acknowledge our seniors Er. Nirdesh Bhattarai and Er. Prashant Bhatta

for their constant guidance and assistance in problem solving, experience sharing and

encouragement during our hard times.

We wish to show our gratitude to Dr. Min Adhikari for the headstart discussion on

solving the optimal trajectory problems and other invaluable suggestions. The crucial

support and guidance of Er. Rishav Mani Sharma (Orion Space) helped to take this

project to next level.

v

TABLE OF CONTENTS

COPYRIGHT. ii

APPROVAL PAGE . iii

ABSTRACT . iv

ACKNOWLEDGEMENT . v

TABLE OF CONTENTS . vi

LIST OF FIGURES . viii

LIST OF TABLES . xi

LIST OF ABBREVIATION . xiii

LIST OF SYMBOLS . xiv

CHAPTER ONE : INTRODUCTION . 1

1.1 Background . 1

1.1.1 Problem Statement . 2

1.2 Objectives . 4

1.2.1 Main Objective . 4

1.2.2 Specific Objectives . 4

CHAPTER TWO : LITERATURE REVIEW . 5

2.1 Vehicle Modeling . 5

2.1.1 Unicycle Model . 5

2.1.2 Differential Drive Robot . 5

2.1.3 Kinematic Bicycle Model . 6

2.1.4 Dynamic Bicycle Model . 6

2.2 State estimation and Localization . 8

2.2.1 Odometry . 9

2.3 Trajectory Generation . 10

2.3.1 Nonlinear Optimization Software . 13

2.4 Simulation and Visualization . 15

2.4.1 Hector SLAM . 16

vi

CHAPTER THREE : METHODOLOGY . 17

3.1 System Modelling . 18

3.1.1 Unicycle and Differential drive robot 18

3.1.2 Road Tyre Interaction . 21

3.1.3 Dynamic Vehicle Model . 23

3.2 Simulated Obstacles . 24

3.3 Obstacle detection and Modelling . 25

3.3.1 Modelling Of line segment obstacles 26

3.3.2 Modelling of circles . 28

3.4 Problem Definition . 31

3.5 Optimal Trajectory Generation . 31

3.6 Solver Selection . 35

3.7 State Estimation and Localization . 37

3.8 Simulation and Visualisation . 39

3.8.1 Turtlebot3 . 39

3.9 Hardware Integration . 42

3.9.1 Sensing Units . 43

3.9.2 Controller . 45

3.9.3 Actuator . 48

3.9.4 Other components . 48

3.10 Software Implementation and Architecture 49

3.10.1 Arduino . 50

3.10.2 Raspberry Pi . 50

CHAPTER FOUR : RESULT AND DISCUSSION 56

4.1 Trajectory Simulations . 56

4.2 ROS/Gazebo Simulation . 65

4.3 Robot Testing . 66

CHAPTER FIVE : CONCLUSION AND RECOMMENDATIONS. 69

5.1 Conclusions . 69

vii

5.2 Recommendation . 70

REFERENCES . 71

APPENDIX A: ARDUINO CODE. 76

APPENDIX B: TRAJECTORY PLANNER . 81

viii

LIST OF FIGURES

Figure 1.1 Autonomous Vehicle Adoption Timeline 2

Figure 1.2 Autonomous control architecture at different levels 3

Figure 2.1 Unicycle Vehicle Model . 5

Figure 2.2 Differential Drive Robot . 5

Figure 2.3 Kinematic Bicycle Model . 6

Figure 2.4 Tire operating at a slip angle 6

Figure 2.5 Lateral force VS slip angle . 7

Figure 2.6 Aligning torque VS Slip angle 7

Figure 2.7 Wheel Encoder Odometry Calculations 9

Figure 2.8 Shooting Methods . 12

Figure 3.2 Unicycle Model . 19

Figure 3.3 Differential Drive Robot . 20

Figure 3.4 Forces acting on wheel . 22

Figure 3.5 Lateral tire force vs. tire slip angle 23

Figure 3.6 Schematic View of vehicle dynamic system 24

Figure 3.7 Shapes obtained at different values of p for
{
(x/5)p+(y/10)p

}
=

1 . 25

Figure 3.8 Grouping of cloud data points 27

Figure 3.9 Splitting Process of a Point cloud group 28

Figure 3.10 Modelling circular obstacle . 29

Figure 3.11 Modelling of obstacles from scan result 30

Figure 3.12 Solution of problem formulated in equation 3.25 34

Figure 3.13 Model Predictive Control workflow 35

Figure 3.14 Solution of problem formulated in equation 3.25 in presence of

system noise . 36

Figure 3.15 Turtlebot3 Waffle in Gazebo Empty World 40

Figure 3.16 ROS node architecture . 41

ix

Figure 3.17 Basic architecture of Turtlebot3 simulation 42

Figure 3.18 Robot Hardware Components 42

Figure 3.19 YDLIDAR G4 model . 44

Figure 3.20 IMU Sensor GY-87 . 44

Figure 3.21 Raspberry Pi 4 Model B . 45

Figure 3.22 Arduino mega 2560 pinout . 46

Figure 3.23 Arduino shield . 47

Figure 3.24 Block Diagram Representation of Motor Driver I/O 47

Figure 3.25 Motor Encoder and wheel assembly 48

Figure 3.26 Buck . 49

Figure 3.27 Battery . 49

Figure 3.28 Robot Working Architecture 49

Figure 3.29 Detailed Robot Architecture . 51

Figure 3.30 Working Structure in Raspberry Pi 52

Figure 3.31 Working of detector thread . 52

Figure 3.32 Working of arduino thread . 53

Figure 3.33 Working of IMU node . 53

Figure 3.34 Main thread data architecture 54

Figure 3.35 Working of main thread . 55

Figure 4.1 State of robot at different time stamps (Open Loop Solution 0.55

seconds) . 57

Figure 4.2 Variation of robot states with time 58

Figure 4.3 Variation of control signals for unicycle robot with time 58

Figure 4.4 State of robot at different time stamps 59

Figure 4.5 Path traced by the robot . 59

Figure 4.6 Variation of robot states with time 60

Figure 4.7 Variation of control signals for unicycle robot with time 60

Figure 4.8 Variation of control signals for differential drive robot with time 60

Figure 4.9 Path traced by robot for different values of planning horizon . . 61

x

Figure 4.10 States of robot at different time stamps for different values of

planning horizon . 61

Figure 4.11 Computational time required for different lengths of planning

horizon . 62

Figure 4.12 State of robot at different time stamps (Table 4.3.1) 62

Figure 4.13 State of robot at different time stamps (Table 4.3.2) 63

Figure 4.14 State of robot at different time stamps (Table 4.3.3) 63

Figure 4.15 Extended Kalman Filter results for unicycle model. Right: Mag-

nified plot . 64

Figure 4.16 Estimation of orientation by sensor measurement and system dy-

namics . 64

Figure 4.17 Gazebo Simulation of Turtlebot3 Waffle 65

Figure 4.18 Path traced by the Turtlebot3 Waffle 66

Figure 4.19 Variation of Turtlebot3 Waffle robot states with time 66

Figure 4.20 Robot with all the components assembled 67

Figure 4.21 Path traced by the robot from (0,0,0) to (-5,0,0) (Table 4.4.1) . . 67

Figure 4.22 Path traced by the robot from (0,0,0) to (10,10,π) (Table 4.4.2) . 68

Figure 4.23 Path traced by the robot from (0,0,0) to (10,10,0) (Table 4.4.3) . 68

xi

LIST OF TABLES

Table 3.1 Motor Driver Truth Table . 47

Table 4.1 Initial and final state of formulated problem 56

Table 4.2 Specifications of modelled obstacles 56

Table 4.3 Paths traced by robot in different test cases (τ= 2sec, ∆t= 0.2sec) 62

Table 4.4 Paths traced by robot in different test cases (τ= 2sec, ∆t= 0.2sec) 67

xii

LIST OF ABBREVIATIONS

CG Center of Gravity

CzIDAS Czech In-depth Accident Study

DOF Degree of Freedom

EKF Extended Kalman Filter

GPIO General Purpose Input/Output

IMU Inertial Measurement Unit

IPOPT Interior Point Optimizer

MPC Model Predictive Control

NLP Non Linear Programming Problem

PCB Prediction and Cost function Based approach

PPR Pulse per revolution

ROS Robot operating system

SLAM Simultaneous Localization and Mapping

UAV Unmanned Aerial Vehicle

UKF Unscented Kalman Filter

URDF Unified Robot Description Format

xiii

LIST OF SYMBOLS

α Angle of slip

ω Angular velocity

µ Coefficient of friction

κ Slip ratio

v Linear velocity

Vr Linear velocity of right wheel

Vl Linear velocity of left wheel

Fx Longitudinal force on tire

Fy Lateral force on tire

Fz Vertical load on tire

R Instantaneous center of rotation

r Radius of wheel

L Wheel base

I Mass moment of inertia

Hk Measurement matrix

Qk Co-variance matrix of process noise

Rk Co-variance matrix of measurement noise

wk−1 Process noise

vk Measurement noise

zk Sensor measurement

yk Measurement residual

Sk Co-variance matrix of measurement residual

Kk Kalman gain

P State Co-variance matrix

xiv

CHAPTER ONE : INTRODUCTION

1.1 Background

Robotics is one of the rapidly developing fields in today’s world. For the past few

decades, robots have proven to be good human friends by replacing the repetitive and

tedious tasks. With regard to the locomotive mechanism, mobile robots can be broadly

classified depending upon whether they are based on land or air or water. Wheeled

mobile robots navigate on the ground. They use wheels for locomotion which are driven

by the motor. The various types of wheeled robots are single-wheeled robots, two-

wheeled robots, three-wheeled robots, four-wheeled robots, and multi-wheeled robots.

Wheeled robots are widely used in smart factories and warehouses for safe material

handling. They also find their applications in surveillance, transportation, medical care,

reconnaissance and planetary exploration, where a robot has to navigate around the dy-

namic and chaotic environment, maneuvering through various types of obstacles. But,

as technology advances, future generations of robots require autonomous handling of

complex problems circumscribed by limited time and resources.

Autonomous Navigation is the ability for a vehicle to determine its location within the

environment and figure out a path that will take it from its current location to some goal

without human intervention. This ability finds its application in ground vehicles like

self-driving cars, Unmanned Aerial Vehicle (UAV), spacecraft, submersible, and other

mobile robots. Broadly, there are two different approaches to navigate. A heuristic

approach utilizes practical rules or behaviors to produce a feasible solution that may not

be optimal but is good enough to achieve some immediate goal. On the other hand, the

optimal approach generates optimal solutions through optimization of some objective

function subject to various constraints.

Autonomous driving is getting closer, but it’s been a long difficult journey to arrive at

this point. The dream of self-driving cars started way back along with the start of auto-

mobile. Even though there is a lot of work to do, until we see self-driving cars on our

1

streets, companies like Waymo, GM’s Cruise and Tesla made impressive progress over

the last years (Cusumano, 2020). Even their autonomous system is not fully featured.

Still there are limitations but with the technical prerequisites becoming available with

respect to previous scenarios, the vision of highly autonomous vehicles gets closer to

realization. Considerable effort is being directed towards autonomously navigating ve-

hicles in different urban environments. One of the most dangerous works we do in our

daily life is driving. There are hundreds of vehicles running and most of them are driven

by human, in the present context. As evidenced by the results of Czech In-depth Acci-

dent Study (CzIDAS) from the amount of analyzed traffic accidents, in 40% of analyzed

accidents inattention has been contributing to the accident occurrence (Bucsuházy et al.,

2020). This is one of the human errors, still there are many. Through automation, we

can minimize or completely eliminate driving deaths by taking human error out of the

picture.

Figure 1.1: Autonomous Vehicle Adoption Timeline

(Source: Company data, Morgan Stanley research.)

1.1.1 Problem Statement

The question of how to generate an optimal trajectory for an autonomouswheeled robotic

vehicle to follow is one of the challenges in this area. Path planning in general is a diffi-

cult task, especially when considering vehicle dynamics andmoving obstacle referred as

dynamic environment. Rapidly changing environments require a re-computation of the

2

path in real-time (Purwin, 2008). In the dynamic environment with autonomous vehi-

cles, we have to ensure that each and every vehicle is performing accurately. Otherwise,

a small error in one of the vehicles may lead to a disaster.

Generally, the main issues that are to be faced while developing a autonomous vehicle

exists at three different levels-perception, planning and control as shown in figure 1.2

(You et al., 2019) (You, Lu, Filev, & Tsiotras, 2019)

Figure 1.2: Autonomous control architecture at different levels

(You et al., 2019).

The perception level consists of sensing and filtering the data which may be the sur-

rounding data with one’s current location. This system consists of number of sensors

which provides data and filter denoises it giving the reasonable estimate for the un-

measureable states (Wan and Van Der Merwe, 2000). The planning level consists of

mainly three tasks, which include mission planning, where the vehicle solves a routing

problem in order to complete a task, decision making, where the vehicle chooses an ap-

propriate action for the next time step from an available action set, and path planning,

3

where the vehicle plans its future trajectory as a function of space or time (Shalev-

Shwartz et al., 2016). Finally, the control level receives the signals from the planning

level, maintains the stability of the vehicle, and tracks the desired path. All of these

levels should operate simultaneously in a control system of a vehicle to operate au-

tonomously. In our robot, we plan to perform all of the three levels. So we will take

data from the sensor, filter it, solve our optimization problem to plan the trajectory with

the required control actuation and finally implement the actuation to track the desired

path.(Shalev-Shwartz, Ben-Zrihem, Cohen, & Shashua, 2016)

1.2 Objectives

1.2.1 Main Objective

• To design and implement an optimal control system in a wheeled robot for au-

tonomous navigation in an uncertain environment.

1.2.2 Specific Objectives

1. To develop kinetic and dynamic models of wheeled mobile robots

2. To formulate the optimal trajectory generation problem as an optimization problem

with appropriate cost function and constraints

3. To compute numerical solution to the optimization problem and derive closed loop

solution with real-time information feedback

4. To develop a prototype of a differential drive robot and compare its performance

with the simulation result

4

CHAPTER TWO : LITERATURE REVIEW

2.1 Vehicle Modeling

2.1.1 Unicycle Model

It is among the simplest models of wheeled robot with a single upright rolling wheel

(Lynch and Park, 2017).

Figure 2.1: Unicycle Vehicle Model

If x and y represent position of the wheel in Cartesian coordinate’s and θ represents

heading direction of the robot, then

ẋ = v.cos(θ) (2.1)

ẏ = v.sin(θ) (2.2)

θ̇ = ω (2.3)

2.1.2 Differential Drive Robot

A differential drive robot consists of two driven wheels whose speeds can be indepen-

dently controlled. It is the most common type of model used to control mobile robots.

Figure 2.2: Differential Drive Robot

5

2.1.3 Kinematic Bicycle Model

In kinematic bicyclemodel, the two front wheels and also the two rear wheels are lumped

together to a unique wheel located at the centre of the front and rear axle as shown in

figure 2.4. It is assumed that only the front wheel of the vehicle is steered. The control

inputs are acceleration at the rear wheel and front wheel steering angle (Polack et al.,

2017).(Polack, Altché, Novel, & de La Fortelle, 2017)

Source: (Polack et al., 2017)

Figure 2.3: Kinematic Bicycle Model

2.1.4 Dynamic Bicycle Model

Lateral Tire Model

In the absence of side force, a tire travels along a straight line. However, during turning

maneuver the tire contact patch slips laterally which causes the direction of motion to

be misaligned with the tire orientation. The angle between direction of motion and tire

orientation is angle of slip (α).

Source: (Polack et al., 2017)

Figure 2.4: Tire operating at a slip angle

6

H.Pacejka of Delft University of Technology experimentally observed the lateral forces

(figure 2.5) and aligning torque (figure 2.6) exerted on the tire with respect to slip angle

and developed an empirical tire model called Pacejka tire model. The formula is called

”Magic Formula” and uses tire slip angle to calculate lateral force and aligning torque.

The model parameters are dependent upon vertical tire load Fz (H.Pacejka, 2012).

H.Pacejka found that the lateral force on the tire varies largely linearly for small slip

angle. So, for small slip angles the forces and moments on tire was approximated as

linear function of slip angle.

Source: (G. Gim, 1990; G. Gim, 1991)

Figure 2.5: Lateral force VS slip angle

Source: (G. Gim, 1990; G. Gim, 1991)

Figure 2.6: Aligning torque VS Slip angle

UA-Gim tire model based on research by Dr.Dwangun Gim uses tire’s kinematic states

7

to calculate the forces and moments at the contact point. This makes the formulation

of forces simplified by providing general equation for all road-tire interaction condition

(G. Gim, 1990; G. Gim, 1991).

2.2 State estimation and Localization

State estimation problem deals with determining the best value of some unknown phys-

ical quantity from the set of measurements. It started way back when Gauss (1963)

developed the method of least square to accurately estimate planetoid Ceres’s orbital

parameters from Piazzi’s published measurements. One of the most important types of

state estimation for wheeled robots is localization, which is the process of determining

the position and orientation of the robot (Jaroszek and Trojnacki, 2015). Probabilistic

methods (Cassandra et al., 1996) such as Kalman filters (Kalman, 1960), Marvok lo-

calization (Burgard et al., 1998) and particle filters (Dellaert et al., 1999) are widely

applied for the localization of robot.

Meriem et al. (2016) did a study on the weighted least square method for state estimation

and investigated how the efficiency of this method changes according to measurement

number, type, weight, and noise level. Considering weight or the co-variance of mea-

surement noise produced better performance.

Kalman filter analyzes the performance of state co-variance and provides an optimal

estimation for linear systems. Nasir et al. (2017) were able to predict position and

heading of two wheeled drive vehicle by applying kalman filter to sensor data obtained

from Inertial Measurement Unit (IMU), odometers and ultrasonic sensors. Their error

converged to 10mm, 10mm and 0.06 deg in x-position, y-position and heading.

To obtain better results in nonlinear system, extended version of kalman filter is used.

Tong (2012) applied the Extended Kalman Filter (EKF) approach to estimate the lateral

and longitudinal velocity of a three Degree of Freedom (DOF) full-vehicle model for-

mulated in MATLAB /SIMULINK. Results of actual vehicle parameters obtained from

CarSim software, well-matched estimated value.

To overcome disadvantages of EKF such as linearization errors and higher computa-

8

tional cost to calculate Jacobian matrices, Antonov et al. (2011) proposed utilization of

Unscented Kalman Filter (UKF) which directly approximate probability density func-

tion. They have tested the performance of UKF on the nonlinear planer vehicle model in

BMW 5 series, which showed a good compromise between accuracy and computational

cost.

2.2.1 Odometry

The use of motion sensors to determine the robot’s change in position relative to a known

position is known as odometry. Shaft encoders are frequently mounted to the driving

wheels of robots to count the number of pulses with wheel rotation. The distance trav-

elled by the robot is then estimated by counting these pulses (Robo-Rats Locomotion:

Odometry, 2001). However, problem due to drift is unaccounted by the estimate.

Wheel Encoder Odometry

Figure 2.7: Wheel Encoder Odometry Calculations

Dc = dcenter =
dleft + dright

2
(2.4)

x′ = x+Dc cos(θ) (2.5)

y′ = y +Dc sin(θ) (2.6)

9

θ′ = θ +
dleft − dright

L
(2.7)

2.3 Trajectory Generation

Trajectory is represented as a sequence of states traversed by the vehicle, parameterised

by time and, possibly, velocity. Trajectory planning (also known as trajectory gener-

ation) is concerned with the real-time planning of the actual vehicle’s transition from

one feasible state to the next, satisfying the vehicle’s kinematic limits based on vehi-

cle dynamics and constrained by the navigation comfort,while avoiding, at the same

time, obstacles including other road users. Katrakazas et al. (2015) generated a num-

ber of trajectories during each planning cycle from the vehicle’s current location, with a

look-ahead distance, depending on the speed and line-of-sight of the vehicle’s onboard

sensors, and evaluating each trajectory with respect to some cost function to select the

optimal one.

The state lattice (Pivtoraiko et al., 2009) is a method for inducing a discrete search graph

on a continuous state space while respecting differential constraints on motion. The

lattice planner formulation was not readily applicable to on-road driving scenarios due

to the high density of vertices and edges that would have been necessary to represent

paths conforming to lanes and this would also drastically increase the computational

time (Katrakazas et al., 2015). Hardy and Campbell (2013) modelled the vehicles as

rectangles; their trajectories were clustured for an easier identification. In this work,

planning is seen as a non-linear constrained optimization problem (Katrakazas et al.,

2015) . The optimization function includes both dynamic and static obstacles, distance

to goal. The similar approach was found to be used by Ziegler et al. where hierarchical

concurrent state machines are used with respect to static and dynamic obstacles, as well

as yield and merge rules (Ziegler et al., 2014). The main limitation of this technique,

however, is that other vehicles are presumed not to accelerate and to keep safe distances

from the road boundaries.

Wei et al. in 2014, adopted a Prediction and Cost function Based approach (PCB). In

this approach, a reference trajectory is used with static and dynamic obstacles as input

10

and multiple candidate trajectories are generated. After predicting the evolution of the

traffic environment, the best strategy is chosen according to comfort, fuel consumption

and progress towards goal (Wei et al., 2014). This method was compared with spatio-

temporal lattice planner and 90% reduction of computational cost was found.

In terms of handling obstacles, existing approaches primarily rely on predicting the tra-

jectories of other traffic participants, either by taking their trajectories into account, or

by making assumptions of constant velocities or constant accelerations (Kushleyev and

Likhachev, 2009). This leads to a huge computational power requirement, since the

obstacles’ trajectories need to be calculated and checked at each moment.

A different approach for trajectory planning, is Model Predictive Control (MPC), which

combines aspects of control engineering within the planning module. Within MPC, a

dynamic model for the vehicle is used and, through it, inputs from the controller are

sampled about the future evolution of the vehicle’s motion. From the dynamic model

and the controller inputs, the optimisation problem of finding the best trajectory for the

vehicle is solved. MPC was used within a driving corridor by Madås et al. (2013) using

a linear bicycle model with linear tyre characteristics which also considers lateral and

yaw dynamics.

Model predictive control (MPC) scheme based on tailored non-quadratic stage cost is

used to fulfill this control task. The weights in each terms of the functions are constant

numbers and do not change with time or position of the vehicle. Since the system is fi-

nite time controllable, it is stabilized by a receding horizon control scheme with purely

quadratic stage costs if an infinite optimization horizon is employed. However, due to

the so called short-slightness of model predictive control, these stability properties are

not preserved if the control problem is only optimized on a truncated and, thus, finite

prediction horizon — even if an arbitrarily large terminal weight is added. Hence, it is

necessary to either incorporate structurally different terminal costs or use non-quadratic

stage costs to appropriately penalize the deviation from the desired set point (Müller

and Worthmann, 2017; Arora, 2004). Worthmann et al. (2015) conducted numerical

11

solutions to explain the necessity of having non-quadratic running costs.

Shooting methods are widely used in the optimal control problems (Worthmann et al.,

2015; Subchan, 2011). The reason behind this is the efficiency, robustess and conver-

gence of the method in solving the boundary value problem. In addition to that, breaking

the simulation running using shootingmethod into N number of sections and running the

simulation individually makes he shooting method more powerful than other methods

(Kelly, 2017). This method is called direct multiple shooting. Koch and Weinmüller

(a) Direct Single Shooting Method

(b) Direct Multiple Shooting Method
Source: (Koch and Weinmüller, 2003)

Figure 2.8: Shooting Methods

(2003) conducted the research on the convergence of the direct single shooting and di-

rect multiple shooting for the perturbed Newton iteration. Multiple shooting was found

to be much faster than single shooting with additional memory usage. Also, the number

12

of grid points used in multiple shooting makes the difference in the computational time.

The higher or lower the grid points from a certain optimum value, the computational

time increases (Koch and Weinmüller, 2003). The right value varies with the properties

of the system. Adhikari and Ruiter (2020) have used direct multiple shooting method

for the optimal trajectory generation problem. Subchan (2011) have used this method

for Missile Trajectory Optimization with The Terminal Bunt Manoeuvre.

Andersson (2013) presented an open-source software framework for numerical opti-

mization called CasADi. CasADi is a general-purpose tool that can be used to model

and solve optimization problems with a large degree of flexibility (Andersson, 2013).

It works on the symbolic frameworks which makes the user to learn and use CasADi

efficiently. Worthmann et al. (2015) used CasADi in Model predictive control of non-

holonomic mobile robots. Arbo, Grøtli, and Gravdahl (2019) used CasADi in closed-

Loop Inverse Kinematics controller. It provides a framework for converting the optimal

control problem into Non Linear Programming and solve the non linear problem to get

the optimal solution. Moreover, CasADi provides a stack called Opti-stack which is

a collection of CasADi helper classes that provides a close correspondence between

mathematical NLP notation. This further helps in solving the problem efficiently.

2.3.1 Nonlinear Optimization Software

For simplicity, let us represent a nonlinear optimization problem as Equation 2.8.

min
x

f(x)

s.t. c(x) = 0

x ≥ 0

(2.8)

In general Equation 2.8 cannot be solved directly or explicitly so, an iterative method

is used that takes an initial guess, and solves sequence of approximate sub problems

to give sequence of approximate solution and refine the local model (2.8) until the im-

proved solution is optimal (Leyffer and Mahajan, 2010). Depending upon how local

model is constructed, Leyffer and Mahajan (2010) have distinguished it into three broad

categories:

13

1. Sequential Linear Models

2. Sequential Quadratic Models

3. Interior-point Models

The solution of nonlinear optimization problem has four main components; a local

model which approximates the optimization problem, a global convergence strategy,

a global convergence mechanism, and convergence test. Global convergence strategy

is essential to promote convergence from remote starting point. That means, it checks

whether our current estimated solution is better than the previous estimated solution.

Various globalization strategy like Augmented Lagrangian Method, Filter and Funnel

Method, and globalization mechanism like line-search methods and trust-region meth-

ods are elaborated in detail by Leyffer and Mahajan (2010).

Depending largely on the local model, some Interior-point solvers and Sequential Lin-

ear/Quadratic Solvers are:

Interior-Point Solvers

Some of the commonly used interior-point solvers are; CVXOPT, IPOPT, KNITRO, and

LOQO. CVXOPT is a free software package that uses an interior-point barrier method

to solve convex optimization problem. It is highly efficient for small and medium

scales problems but cannot be generalized to solve non-convex problems (Diamond and

Boyd, 2016). KNITRO is a most advance commercial solver for nonlinear optimization

that implements a trust-region interior-point penalty-barrier method and LOQO another

commerical solver, implements infeasible primal-dual interior point method (Leyffer

and Mahajan, 2016). IPOPT a open source software implements interior point line

search filter method. Its mathematics in detail is described by Andreas Wachter (2005).

Because of it’s ability to solve large scale problems with upto millions variables and

constraints it is widely used to solve optimal control problems. Assuming the Jacobian

matrix of constraint function as sparse it can efficiently solve large problems and is not

limited for small scale and dense problems (Andreas Wachter, 2005).

Sequential Linear/Quadratic Solvers

14

Some of the available sequential linear and quadratic solvers are CONOPT, FilterSQP,

LINDO, NLPQLP, NPSOL, and SNOPT (Leyffer and Mahajan, 2010). CONOPT and

SNOPT are solvers for large-scale nonlinear optimization however they are best suited

with problems havingmoderate degree of freedom (Gill et al., 2005). (Gill, Murray, & Saunders, 2005)

2.4 Simulation and Visualization

For simulating and understanding the performance of the robot in different situations

Robot operating system (ROS), a free and open-source platform specially designed for

robot programming can be used. It is not a real operating system but has operating

system-like features (Joseph, 2018). The framework also provides different capabilities

of robot programming like supporting high-level programming languages, off-the-shelf

algorithms, integration with third-party libraries, interprocess communication, and so

on. It has many built-in GUI tools and command lines that help debugging and visual-

ization which are extremely useful while working with robots. For instance, visualiza-

tion and simulation with cameras, inertial measurement units can be obtained by using

the Rviz tool and Gazebo simulator (Joseph, 2018).

Quigley et al. (2009) presents a brief overview of ROS framework. ROS makes use of

the Unified Robot Description Format (URDF) to model the robot. URDF is basically

the collection of files (written in XML format) that has all the information of the robot’s

physical description such as its 3D model, actuators, controllers, sensors, etc. (Joseph,

2018). It also includes information about physical shape and size of the robot, descrip-

tion of the parts and their dynamic properties like mass, moment of inertia, collision and

interaction with external environment etc. It gives knowledge of what a robot actually

looks like to the computer without being the need to develop a real one.

To perform a specific action like finding a path by the robot, ROS services are used.

ROS services make use of the ROS server: the node that is going to provide the service,

and ROS clients: the node that consumes the service. The service is essentially one-time

communication where the clients send the request and the server responds. A service

can essentially be called anytime. Unlike Services, with ROS Topics, the publisher con-

tinuously sends information to the subscriber.

15

For simulation of robot in simulated environment gazebo simulator can be used. Gazebo

simulates multiple robots in a 3D environment, with extensive dynamic interaction be-

tween objects. Using gazebo simulator makes it possible to rapidly test algorithms,

design robots, perform regression testing, and train AI system using realistic scenarios.

Gazebo offers the ability to accurately and efficiently simulate populations of robots in

complex indoor and outdoor environments. It also provides necessary plugins for con-

trolling robots using different control mechanisms. It can also be used to simulate the

sensing devices such as LIDAR, camera etc.

2.4.1 Hector SLAM

Simultaneous Localization and Mapping (SLAM) is a robotics problem that attempts to

locate itself while also mapping the surroundings. The SLAM challenge arises when a

robot lacks a global positioning sensor and must instead rely on ego-motion sensors like

odometry, IMU, etc (Thrun, 2007). Hector SLAM is an open-source method that uses a

LIDAR to create a 2D grid map of the surrounding area (Kohlbrecher et al., 2011). This

system uses scan matching to determine the robot’s location rather than the odometry

of the wheel, which is a frequent way in other SLAM methods. Due to its rapid update

rate, the LIDAR is able to complete the scan matching duty to find the robot quickly and

precisely. The Hector algorithm employs the Gaussian-Newton minimization approach,

which is considered an update to the Newton method and has the benefit of not requiring

the computation of second derivatives (Eliwa et al., 2017).

The system subscribes to the sensor_msgs/LaserScan message and publishes

nav_msgs/OccupancyGrid, tf transformation, and geometry_msgs

/PoseWithCovarianceStamped. Based on Hector SLAM data, the information may

be used for sensor fusion in the system. The technology creates a detailed 2D map

of the surroundings that may be utilized by a mobile robot to navigate (Filipenko and

Afanasyev, 2018). (Eliwa, Adham, Sami, & Eldeeb, 2017) (Kohlbrecher, Meyer, von Stryk, & Klingauf, 2011)

16

Start

Mathematical Modelling of System

Obstacle Modelling and Detection

Trajectory Optimization Problem
Formulation

Transcription to Nonlinear Programming
Problem

Numerical Computing

Is

solution

feasible for
different test

cases

?

State Estimation and Localization

Is

Closed Loop

Solution

Satisfactory

?

ROS Implementation and
Gazebo Simulation

Robot Design and

Hardware Integration

Is

Robot performance

Satisfactory

?

Documentation

No

Yes

YesNo

Yes

No

CHAPTER THREE : METHODOLOGY

Project can be divided into distinct and independent activities that needs to be carried

out and integrated to produce the final result. Major steps include modelling, algorithm

development, cost formulation, simulation and so on.

Figure 3.1: Research Methodology

17

3.1 System Modelling

Modelling of system is a method to represent the dynamic and kinematic aspects of

all the system components in a mathematical form, generally differential equations that

govern the input-output relation of the system. This includes developing the relations

that best represents the response of the system for the given input, mathematically rep-

resenting the system behavior, natural physical constraints and human imposed con-

straints. Mathematical analysis of the vehicle requires the development of some type

of vehicle model, modelling of the environment in which the vehicle is supposed to op-

erate, modelling of stationary as well as moving obstacles. These models along with

their imposed constraints are solved using some form of numerical method to obtain the

optimal solution while at the same time satisfying all the imposed constraints.

Modelling of the vehicle behavior can be done in different form depending upon the

vehicle type and analytical requirement. The most basic method is to develop the kine-

matic model of the vehicle which gives kinematic response of the vehicle for given set

of inputs. A set of force equations can be used to represent the response of the system

to external actuating force. Initially, the kinematic models of the vehicle are developed

without considering the actuating force. The response of such models for control inputs

are observed and analyzed (Rubio and Albert, 2019).

3.1.1 Unicycle and Differential drive robot

Unicycle is one of the simplest models of wheeled robot with a single upright wheel that

rolls on a flat surface. For unicyclemodel in two-dimensional planewith known position

and orientation, the vehicle can be controlled with control input of linear velocity of the

wheel and angular turning velocity. These control inputs are obtained from the controller

and are optimal for the given conditions. The control inputs are constrained to some

maximum and minimum values.

If x and y represent position of the wheel in Cartesian coordinate’s and θ represents

heading direction of the robot, then

18

Figure 3.2: Unicycle Model

ẋ = v.cos(θ) (3.1)

ẏ = v.sin(θ) (3.2)

θ̇ = ω (3.3)

Here v (forward velocity) and ω (angular turning velocity) are optimal control inputs

from the controller.

The state-space representation of the above model can used to better observe the devel-

opment of states throughout the motion of the vehicle. For a vehicle with states

X=


x

y

θ

 and Ẋ=


ẋ

ẏ

θ̇

, a control input of U =

v
ω

 applied for time dt,

space state relation is written as,

Ẋ = f(X,U) =


cos(θ) 0

sin(θ) 0

0 1

× U.

The new state of the vehicle is updated as,

19


xn+1

yn+1

θn+1

=

xn

yn

θn

 + ∆ t∙


cos(θn) 0

sin(θn) 0

0 1


vn
ωn



or,Xn+1 = Xn +∆t∙A ∗ U

The unicycle model can be used to derive the model of differential-drive robot. A dif-

ferential drive robot consists of two wheels of radius r with two independent actuators

which can rotate two wheels in the same axis independently. The speed difference be-

tween the two driven wheels provides maneuverability to the robot. A third low friction

caster wheel/ball helps to keep the robot in horizontal position (Noga, 2006).

Figure 3.3: Differential Drive Robot

For a differential-drive robot with wheel base L and wheel radius r as shown in figure

3.3, ICR is the instantaneous center of rotation with radius R at anymoment. The robot’s

linear velocity is V. If the robot’s angular velocity is ωv, the linear velocity is given as

V = ωv∙R

Vl = ωv∙(R− l

2
)

Vr = ωv(R +
l

2
)

So,

ωv =
(Vr − Vl)

L
= (ωvr − ωvl)∙

r

L

20

R =
(ωvlr)

2
∙(ωvr − ωvl)

V = (ωvr + ωvl)∙
r

2

Taking velocity components in x and y direction,

ẋ =
r

2
∙cos(θ)∙(ωvl + ωvr) (3.4)

ẏ =
r

2
∙sin(θ)∙(ωvl + ωvr) (3.5)

θ̇ =
r

2
∙(ωvl + ωvr) (3.6)

Here, wheel angular velocity for left and right wheels can be obtained as:

ωvr =
2V + ωL

2r
(3.7)

ωvl =
(2V − ωL)

2r
(3.8)

Where V, forward velocity and ω, angular turning velocity are the control inputs from

the controller designed for unicycle robot. Analysis of response of a differential drive

robot with wheel-base (L) = 0.15m and wheel radius (r) = 0.05m is performed and the

results are discussed in the following pages.

3.1.2 Road Tyre Interaction

Forces and moments are developed in vehicle tires due to the action of friction. These

forces and moments are very important parameters as they influence the handling and

overall dynamics of the vehicle. Longitudinal and lateral forces developed on the tires

are of particular importance as they have highest influence in the vehicle dynamics.

These forces are observed to be the function of vertical load on tire (Fz), and slip ratio(κ).

Slip ratio is defined as the ratio between slip velocity and vehicle velocity. Mathemati-

cally, it can be expressed as:

Slip ratio(κ) =
(Vwheel − Vvehicle)

Vvehicle

Slip ratio generally exists during braking, acceleration and cornering maneuver. Slip

angle(α), is defined as the angle between the tire orientation and velocity vector of the

vehicle. If Vx is the tire velocity component in the direction of tire orientation and Vy is

the velocity component perpendicular to tire orientation, the slip angle (α) is given as:

slip angle (α) =
Vy

Vx

21

Figure 3.4: Forces acting on wheel

Various experiments have attempted to find the relation between tire forces and tire slip

angle. Of themanymathematical tire forcemodels, Magic formula tire model developed

by Hans B. Pacejka (H.Pacejka, 2012) has been widely used to calculate tire force and

moment characteristics. Longitudinal (Fx) and lateral (Fy) forces on a tire as given by

magic formula are as follows:

Fx = D∙sin(C∙tan−1(Bκ− E[Bκ− tan−1(Bκ)]))∙Fz (3.9)

Fy = D∙sin(C∙tan−1(Bα− E[Bα− tan−1Bα]))∙µ∙Fz (3.10)

The constant coefficients B, C, D, E are used to appropriately represent the curvature

characteristics representing respectively stiffness, shape, peak and curvature character-

istics. Values of these constants depend upon the kind of contact characteristics between

contact surface and tyre. µ is the coefficient of friction between road and tire.

Lateral tire force has a very complex, empirical, non-linear relationship with tire slip

angle as illustrated by the figure. But as can be observed in the figure 3.5, for small slip

angle(<8 degrees) the lateral force can be assumed to be linear function of slip angle.

Small slip angles occur in lower velocity region. Hence, linear approximation of lateral

tire force with tire slip angle is appropriate for our low-speed application.

22

Linear approximation of lateral tire force is given as:

F = c∙α

Where, c is tire cornering stiffness and α is slip angle.

Figure 3.5: Lateral tire force vs. tire slip angle

3.1.3 Dynamic Vehicle Model

Four-wheel car like vehicle with Ackerman Steering can be modelled using forces act-

ing on the four wheels of the vehicle. The forces as given by Magic formula causes the

motion of vehicle and vehicle maneuvering can be obtained by appropriately changing

the components of the forces acting on the tires (Lynch M. and C., 2013)

By the use of Newton’s law of motion and some basic geometric relationships, the lon-

gitudinal velocity vx(t), the lateral velocity vy(t) and the yaw rate r(t)measured around

the Center of Gravity (CG) of the vehicle can be described by the following three dif-

ferential equations:

ẍ = ẏ∙r+
1

m
((FxFL+FxFR)∙cos(θ)−(FyFL+FyFR)∙sin(θ)+FxRL+FxRR) . . . (3.11)

ÿ = −ẋ∙r +
1

m
((FxFL + FxFR)∙sin(θ) + F (yFL+FyFR)∙cos(θ) + FyRL + FyRR) . . .

(3.12)

23

Figure 3.6: Schematic View of vehicle dynamic system

ṙ =
1

I
(a∙((FxFL + FxFR)∙sin(θ) + F (yFL+FyFR)∙cos(θ)− b∙(FyRL + FyRR))) . . .

(3.13)

Here, m is mass and I is moment of inertia of the vehicle.

3.2 Simulated Obstacles

Dynamic aswell as stationary obstacles weremodeled and simulated in the environment.

There are also restrictions on state and control values, which are treated as obstacles in

the configuration space. Then the objective of our optimization problem is to find a set

of control-state that minimizes a cost function subject to dynamic/kinematic equation

constraints, obstacle constraints as well as constraints on state and control.{
((x− xc)/a)

p + ((y − yc)/b)
p
}
= 1 (3.14)

For even number values of p > 1, the above mathematical equation 3.14 represents

a 2 dimensional closed shape and can be modeled as an obstacle in the map. (xc, yc)

determine the center location of the obstacle. The value of a and b determine the size of

the obstacle, and p determines the shape of the obstacle.

24

(a) p = 2 (b) p = 4 (c) p = 8 (d) p = 50

Figure 3.7: Shapes obtained at different values of p for
{
(x/5)p + (y/10)p

}
= 1

Figure 3.11 shows how the shape can be changed by altering the value of p. The center

location of (xc, yc) = (0, 0) and size parameters a = 5 and b = 10 are used in the equation

3.14. The equation represents an ellipse for p = 2, and as the value of p is increased the

shape tends to resemble a rectangle of size 10*20.

Circular shaped obstacle with center at (xc, yc) and a radius of r is modeled by substi-

tuting a = b = r and p = 2 in equation 3.14.

(x− xc)
2/r2 + (y − yc)

2/r2 = 1 (3.15)

h(x, y) = ln
{
(x− xc)

2/r2 + (y − yc)
2/r2

}
= 0 (3.16)

For all values of robot position (x, y), it is required that h(x, y) > 0. Further, for ro-

bustness, a function r(x, y) is defined as: r(x, y) = eα∗e
−h where, α is a parameter to

be tuned. The value of r(x, y) is to be minimized.

3.3 Obstacle detection and Modelling

Detection and modelling of obstacles is necessary to identify stationary as well as mov-

ing obstacles and maintain the condition that the obstacles are avoided while generating

the trajectory. The obstacles present in the environment are detected and mathemati-

cally modelled to incorporate them into the constraints and into objective functions.

Sensing of obstacles and the environment was performed using YDLIDAR. LIDAR sen-

sor detects the obstacles in point cloud form.Sensing of obstacles and the environment

was performed using YDLIDAR. We have used the “obstacle detector” ROS package

to model the obstacles from the point cloud data received from the laser scan. The ROS

packagemodels obstacles into circular and line segments and gives coordinates of center

of the circle and radius in case of circular obstacle models and coordinates of end-points

25

of line segments in local coordinate frame of the scanner. The package allows for tun-

ing of certain scan parameters such as minimum and maximum scan range, minimum

and maximum range of obstacles modelled. The scanned point cloud data and modelled

obstacles can be visualized through the “obstacle visualizer” node.

The obstacle detector package models obstacles in two geometrical shapes: circle and

straight-line segment. The coordinates obtained from the package are first converted to

global frame of reference. Then, the circular obstacles are represented using an equation

of circle as:

(x− h)2 + (y − k)2 = r2

Where, (h, k) represents the center of circle, r the radius and (x, y) the current robot

location.

Line segment information is obtained in the form of coordinates of the end point. The

coordinates are transformed into global frame and obstacle is modelled as an ellipse

centered at mid-point of two end-points and with major axis the line segment itself, the

minor axis is manually provided. Equation of elliptical obstacle in global frame of ref-

erence is:

(x− h)2
(
cos2θ

a2
+

sin2θ

b2

)
+ 2(x− h)(y − k)sinθcosθ

(
1

a2
− 1

b2

)
+(y − k)2

(
sin2θ

a2
+

cos2θ

b2

)
= 1

(3.17)

where, for two end points of line segment P (x1, y1) and Q(x2, y2),

Ellipse centre: (h, k) = (
x1 + x2

2
,
y1 + y2

2
) (3.18)

Major axis: a =
1

2

√
(x2 − x1)2 + (y2 − y1)2 (3.19)

Ellipse orientation: θ = tan−1(
y2 − y1
x2 − x1

) (3.20)

3.3.1 Modelling Of line segment obstacles

Modelling of obstacles from LIDAR csan data points into geometric shapes are carried

out in accordance with the work of (Przybyla, 2017). Modelling of obstacles starts with

26

grouping of cloud data points. Groups are distinguished by examining the distance be-

tween two consecutive points. Grouping is done to provide a collection of point subsets

possibly representing separate objects. Any point Pi is assigned to a group Sj of point

Pi−1 if the user defined criterion of minimum Euclidean distance is satisfied as shown

in 3.8. If the criterion is not met, a new group Sj+1 is created and the whole grouping

process is started again. Resulting points constitute point subsets that are subject to the

process of splitting.

Source: (Przybyla, 2017)

Figure 3.8: Grouping of cloud data points

Each point subset Sj is examined for possible splitting into two separate subsets. Groups

consisting of less than Nmin points are not subject to this procedure. The procedure of

splitting relies on iterative end point fit algorithm, which draws a leading line between

two extreme points of a point subset, and seeks the point of group that lies farthest from

the line. Then the subset is split into two subsets if it meets the criterion of maximum

distance between line and the point examined. This procedure is repeated recursively for

each new subsets until no more splitting occurs. Then a line segment is drawn between

two extreme points of a subset which acts as a line segment obstacle later modelled into

an elliptical obstacle.

27

(a) Testing for split requirement

(b) Splitting of a group into two subsets

Source: (Przybyla, 2017)

Figure 3.9: Splitting Process of a Point cloud group

3.3.2 Modelling of circles

For modelling of circular obstacles, for each line segment previously created, an equi-

lateral triangle is constructed with its base coinciding with the segment and its central

point placed away from the origin. Next, on the basis of this triangle, an inscribed circle

is constructed with radius :

rn =
1√
3
ln (3.21)

Where ln denotes segment length and with centre at:

p⃗0n =
1

2
(⃗p1n+ ⃗p2n− rnn⃗n) (3.22)

Where represents segment normal vector pointing towards origin. Then the resulting

circle is enlarged with a user defined margin rd. If the resulting radius is smaller than the

maximum user-defined threshold rmax, the circle is selected as the obstacle and original

28

line segment is discarded.

Source: (Przybyla, 2017)

Figure 3.10: Modelling circular obstacle

ROS communication architecture

ROS communication architecture for detection and modelling of obstacles is explained

as follows:

Themain node, obstacle detector, which convertsmessages of type sensor msgs/ Laser-

Scan from topic scan or messages of type sensor msgs/PointCloud from topic pcl into

obstacles, which are published as messages of custom type obstacles detector/Obstacles

under topic obstacles. The point cloud message must be ordered in the angular fashion,

because the algorithm exploits the polar nature of laser scanners. The obstacle detector

node modells the scan data nto circular and line segment data and gives following cus-

tom messages:

1. CircleObstacle

• geometry msgs/Point center

29

(a) Obstacle Cloud points

(b) Modelled Obstacles

Figure 3.11: Modelling of obstacles from scan result

30

• float64 radius

2. SegmentObstacle

• geometry msgs/Point first point

• geometry msgs/Point last point

3.4 Problem Definition

Cost Function:

The cost function is a PerformanceMeasure designed such that its minimization ensures

a desirable performance of the system. The cost function (J) is designed for following

set of problem scenario:

a. The goal state of the robot is X(t = tf) = Xf .

b. The control effort U is to be kept as low as possible.

c. Obstacle should be avoided. i.e. r(x, y) = (eα∗e
−h
) is to be minimized.

Following cost function is designed to incorporate above objectives:

Minimize : J =

∫ tf

t0

{
c1[x(t)− xf]

2 + c2[y(t)− yf]
2 + c3[θ(t)− θf]

2 + c4[v(t)]
2

+c4[ω(t)]
2 + r(x, y)

}
dt.

(3.23)

Constraints:

a. Dynamics constraint: Ẋ = f(X,U)

b. Initial state: X(t = t0) = X0

c. Box Constraint: xmin ≤ x ≤ xmax and ymin ≤ y ≤ ymax

d. Velocity limit: vmin ≤ v ≤ vmax

e. Angular velocity limit: ωmin ≤ ω ≤ ωmax

f. Obstacle Constraints: h(x, y) > 0

3.5 Optimal Trajectory Generation

The solution to the optimization problem generates optimal trajectory for the robot as a

set of control and states. Pontryagin’s minimum principle gives necessary conditions for

optima and can be used to analytically solve an optimization problem in terms of state

31

and co-state vectors. However, it is almost impossible to find an analytical solution if

large dimensional state and control vectors are involved. There are various numerical

methods and algorithms to solve the optimization problem. The problem (cost as well

as constraints) are discretized and transformed into a Non Linear Programming Problem

(NLP) before solving for the values of control and states in the nodal points. The Goal of

the above nonlinear optimization programming problem is to determine optimal values

of X and U such that the objective function J is minimized.

The optimal control problem (3.23) is transcribed into a non linear programming prob-

lem by discretizing the objective function and the constraints (Kelly, 2017).

Minimize : J =
N∑
k=1

{
c1 ∗ [xk − xf]

2 + c2 ∗ (yk − yf)
2 + c3 ∗ (θk − θf)

2

+c4 ∗ [vk]2 + c4 ∗ [ωk]
2 + r(xk, yk)

}
.

(3.24)

Subject to:

Xk=1 = X0

for k = 1:N

Xk+1 = Xk + f(Xk, Uk) ∗∆t

xmin ≤ xk ≤ xmax

ymin ≤ yk ≤ ymax

vmin ≤ vk ≤ vmax

ωmin ≤ ωk ≤ ωmax

h(xk, yk) > 0

Goal of the above nonlinear optimization programming problem is to determine optimal

values of X and U such that the objective function J is minimized. For a system with n

number of states and m number of control inputs, X is a n by N + 1 matrix and U is a

m byN matrix. So the total number of optimization variables are n ∗ (N +1)+m ∗N .

The above formulation is called Multiple Shooting Method. The other method known

as Single Shooting Method uses only the elements of Um∗N as optimization variables

and X is obtained according to the rule: Xk+1 = Xk + f(Xk, Uk) ∗∆t.

32

Direct single shooting method approximates the trajectory using a simulation.The deci-

sion variables in the nonlinear program are an open-loop parameterization of the control

along the trajectory, as well as the initial state. Direct shooting is well suited to applica-

tions where the control is simple and there are few path constraints, such as space flight

(Betts, 1998). Multiple Shooting Method, also known as parallel shooting, is an exten-

sion of the direct single shooting method. Rather than representing the entire trajectory

as a single simulation, the trajectory is divided up into segments, and each segment is

represented by a simulation. Multiple shooting tends to be muchmore robust than single

shooting, and thus is used on more challenging trajectory optimization problems (Betts,

1998).

Example Problem

Consider a unicycle robot initially at (x, y) = (0, 0) heading towards an axis aligned

with the abscissa (i.e θ = 0). We desire to navigate the robot to a new state of (x, y, θ) =

(10, 10, 0). There exists a circular obstacle of diameter 1 unit at location (x, y) = (5, 5).

So, h(xk, yk) = ln
{
((xk − 5)/0.5)2 + ((yk − 5)/0.5)2

}
and r(xk, yk) = (e5∗e

−h
) .

Minimize : J =
N∑
k=1

{
[xk−10]2+(yk−10)2+(θk−0)2+0.5∗[vk]2+0.5∗[ωk]

2+r(xk, yk)
}
.

(3.25)

Subject to:

Xk=1 = [0, 0, 0]T

for k = 1:N

Xk+1 = Xk + f(Xk, Uk) ∗∆t

−1 ≤ vk ≤ 1

−1.5 ≤ ωk ≤ 1.5

h(xk, yk) > 0

The above problem is solved for N = 100 and∆t = 0.2 seconds. This means an optimal

trajectory (control-state set) is generated for the next 20 seconds. The problem has a

total of 503 optimization variables to solve for. The problem is implemented in CasADi

framework and solved using the interior point solver. Figure 3.12 illustrates the solution

33

of the example problem. It can be observed that the control signals (v and ω) drive the

unicycle robot to final state with minimal error.

(a) Path traced

(b) Variation of states with time

(c)

Figure 3.12: Solution of problem formulated in equation 3.25

Receding Horizon Control

Receding Horizon Control requires solving the nonlinear programming problem repeat-

edly over a moving finite time horizon (Mattingley et al., 2011) . The NLP is solved

34

for a finite time horizon (τ) while just implementing it on the current timeslot (∆t) and

then repeating the optimization over and again. Also known as Model Predictive Con-

trol (MPC), this control scheme is capable of foreseeing future events and taking control

actions in response. Since it works on real time information updates, a feedback control

system is realized making it more robust to noises and uncertainties.

Figure 3.13: Model Predictive Control workflow

While the open loop optimal control determined as Figure 3.12 works good for a per-

fectly modeled system, it fails to drive the system to final state if certain degree of

uncertainty is present in the model. The system is simulated by adding Gaussian noise

with SD proportional to the control signal. It can be noted in figure 3.14 that the closed

loop control obtained by MPC (τ = 2sec,∆t=0.2sec) drives the system almost to the

final state besides the presence of disturbances.

3.6 Solver Selection

Very often the equations that describe the relationship between the quantities in a pro-

cess are of non-linear nature. In addition, many of these variables have to stay within

certain intervals. These constraints are introduced either to set the physical capabili-

ties (e.g., vehicle speed), meaningfulness of the variables (e.g., mass being positive)

35

(a) Open Loop Control

(b) Receding Horizon Control

Figure 3.14: Solution of problem formulated in equation 3.25 in presence of system
noise

or to guarantee certain operational constraints(e.g., obstacle avoidance). These types of

non-linear programs arise in many classes of problems, dynamic optimization being a

common case (Frasch, 2015). Finding the optimal, time dependent profile for control

of a system, whose states are changing involves solving a non-linear problem. If dis-

cretization approach is used, the constraint functions are divided into multiple blocks of

process model equations at the same time having to maintain continuous profile of state

variables over time. Also, as the number of discretization point increases, the accuracy

of the dynamic optimization problem increases, so it becomes desirable to have large

number of discretization point at the cost of increasing optimization variables and mak-

ing the problem more complex.(Andreas Wachter, 2005) The programs that provide the

solution of such non-convex, non-linear, continuous and smooth optimization problems

are called Non-linear Programs(NLPs). Several methods exist for the solution of such

36

non-linear problems. One of the most efficient and most commonly used algorithms is

Interior Point Optimizer (IPOPT).

IPOPT is an open-source software package for large-scale non-linear optimization. It is

used to solve the non-linear optimization problems of the form :

min
x∈Rn

f(x)

s.t. gL ≤ g(x) ≤ gU

xL ≤ x ≤ xU

(3.26)

where x∈ R are the optimization variables with lower and upper bounds of xL and xU ,

f: R−→Rn is the objective function with non-linear constraints g(x). IPOPT solver can

be used to solve the optimization problem with both f(x) and g(x) being either linear or

non-linear, convex of non-convex as long as they are twice continuously differentiable.

(Andreas Wachter, 2005)

3.7 State Estimation and Localization

A system which is not observable cannot be controlled. Therefore, state estimation and

localization are the integral parts of autonomous navigation. Sensor measurements are

noisy in nature and can not give the true value of a quantity being measured. This neces-

sitates algorithms to find the best estimate of the measurement given some assumptions

about our sensor and the external world.

State estimation of wheeled robot roughly consists of two main tasks: Estimation of

vehicle dynamics state and localization of vehicle (Wischnewski et al., 2019). The for-

mer is obtained from the system modelling and the latter is the method by which we

determine position and orientation of a robot with reference to the environment. By

reviewing the literature, a modified version of Kalman Filter called Extended Kalam

Filter can be applied to estimate state which can handle non-linearity of state equation.

The algorithm relies on linearization of the system and follows the alternating process

of prediction and correction of standard Kalman Filter.

At a given time step ‘k’, the system dynamics of the robot can be written as:

xk = f
(
x(k−1), u(k−1), w(k−1)

)
(3.27)

37

This equation can be converted into a linear discrete time state space model of the form:

xk = A(k−1)x(k−1) +B(k−1)u(k−1) + w(k−1) (3.28)

Here, A(k−1)and B(k−1) are the Jacobian matrices representing how the state of the sys-

tem changes from time k-1 to k with the absence and presence of the control command

respectively.

The observation model is given by:

hk = Hkxk + vk (3.29)

The process noise w(k−1) and measurement noise vk are assumed to be a normally dis-

tributed white noise (uncorrelated over time) with zero mean. The co-variance matrices

of process noise and measurement noise are denoted by Qk and Rk respectively. The

measurement matrix Hk converts the predicted state estimated at time step k into pre-

dicted sensor measurement at the same time step. In our simulation we have assumed

Hk to be identity matrix signifying the fact that all states are directly measured from the

sensor data.

Prediction:

We will denote the maximum likelihood estimate for time step k based on the infor-

mation available up to time instance k-1 by x̂(k|k−1). Applying the system equation we

obtain the best possible estimate at time k.

x̂(k|k−1) = Ax̂(k−1│k−1) +Bu(k−1) (3.30)

From the definition of co-variance and the underlying random process,

P(k|k−1) = AP(k−1|k−1)A
T +Qk (3.31)

Correction:

Kalman gain matrix Kk can be calculated based on statistical properties of system and

measurement residual (yk) which is the difference between actual sensor measurement

(zk) and predicted sensor measurement (h).

yk = zk − h (3.32)

Sk = HkP(k|k−1)H
T
k +Rk (3.33)

Kk = P(k|k−1)H
T
k S

−1
k (3.34)

Update:

38

By incorporating both system dynamics and measurement residual with optimal gain,

new state estimation can be obtained.

x̂(k|k) = x̂(k|k−1) +Kkyk (3.35)

P(k|k) = (I −KkHk)P(k|k−1) (3.36)

To summarize, the designed filter function algorithmwhich estimates the new state from

the knowledge of previous states and sensor measurements is as follows:

1. Input x̂(k|k−1), P(k−1|k−1), Zk, Ak, Qk,Hk, Rk

2. Predict state covariance matrix P(k|k−1).

3. Obtain measurement model, hk

4. Calculate measurement residue, yk and its covariance, Sk

5. Calculate near optimal Kalman gain,Kk

6. Update estimated state x̂(k|k) and its covariance P(k|k).

7. Return x̂(k|k) and P(k|k)

A key thing to note is that, the filter already takes predicted state estimation at time step

‘k’ which is obtained from discretization and linearization of nonlinear state equation by

either Euler or RK-4 method. While implementing the filter for various kinematic and

dynamic vehicle model, the value of A Matrix changes, for example for unicycle model

its value is identity. The measurement matrix Hk and hence the measurement model h

depends on the types and the number of sensors used in our vehicle. The estimation of

state, number of sensors to be incorporated and the state to be measured or estimated

from the observational model fundamentally relies on the observability analysis.

3.8 Simulation and Visualisation

Algorithms discussed were first tested using programming and numeric computing plat-

form MATLAB. Simulations were performed for different test cases. Finally, the code

was reiterated in Python to facilitate the ROS implementation and Gazebo simulation.

3.8.1 Turtlebot3

Turtlebot is a low-cost, personal robot kit with open-source software that runs on the

ROS standard platform (Ackerman, 2017). The TurtleBot3 was created in 2017 with

39

features to fill the absent functionalities of its predecessors, as well as user needs. Turtle-

Bot3 is a compact, modular, inexpensive, and programmable next generation mobile

robot for use in education, research, hobby, and product development (Guizzo and Ack-

erman, 2017).

Figure 3.15: Turtlebot3 Waffle in Gazebo Empty World

The ”burger” and ”waffle” variants of Turtlebots are the two major configurations that

are available. The waffle model is more expensive than the burger model due to its

greater size and additional camera sensor (Amsters and Slaets, 2019). Our control sys-

tem is tested on the Turtlebot3 Waffle model. Since the Turtlebot3 Gazebo Simulation

relies on the ROS Gazebo package, the necessary Gazebo version for ROS is installed

before the simulation can be conducted (Guizzo and Ackerman, 2017).

The turtlebot subscribes to /cmd_vel topic to take velocity commands and publishes

the state updates to the /odom topic. On the other hand, the trajectory planner node

subscribes the /odom topic, solves for control-state pair, and publishes the control to

/cmd_vel topic.

40

Fi
gu
re
3.
16
:R

O
S
no
de

ar
ch
ite
ct
ur
e

41

Figure 3.17: Basic architecture of Turtlebot3 simulation

3.9 Hardware Integration

After navigating the Turtlebot_3 Waffle robot with a favorable outcome in the ROS

environment for different test scenarios, various mechanical and electrical components

were selected and assembled to fabricate a differential drive-wheeled robot. The main

parts of differential drive robot include sensors, controllers, actuators, and the power

source.

Figure 3.18: Robot Hardware Components

42

3.9.1 Sensing Units

To gather information of surrounding and to acquire knowledge of robot states, various

sensors were equipped on board.

Lidar

YDLIDAR G4 was used to model the environment and detect obstacles. It is a 360°

2D Lidar having high precision scanning capabilities in both clockwise and anticlock-

wise direction. Based on the principle of triangulation, it can scan environment and the

smallest obstacles at a range of 16m with scanning rate up to 9,000 times per second. It

provides wireless data communication by employing OptoMagnetic technology.

To be able to observe point cloud data scanned by G4, it is integrated to ROS Framework

via USB Type-C Cable and USB Adapter Board. It further requires additional auxiliary

power of +5V for stable operation. It operates within 5-12Hz frequency with starting

current of 1A. Equippedwith a brushless motor and encoder disc mounted on bearings, it

draws maximum sleeping current of 50mAwhen system sleeps. When motor is running

at 7Hz it typically draws 500mA of maximum current

It can detect obstacles just above 41mm from its base surface at minimum ranging dis-

tance changing from 0.12m to 0.28m depending on ranging frequency. It typically has

2cm systematic error when range is less than 1m and statistical error of 2% for range

smaller than 8m. Because of its high precision scanning, and wide-ranging range with

adaptive scanning frequency it is well suited for this project work.

Encoder

Closed-loop operation of the robot demands the application of an encoder that measures

the rotation of the shaft/motor and translates it into a series of pulses. Robot’s states are

feedback to the controller using 600 Pulse per revolution (PPR) rotary optical encoders

attached to the individual motor shafts. It is an absolute encoder that provides 1200

counts per revolution.

Previously, we tested brush encoders, where brushes make contact with conductive seg-

43

Figure 3.19: YDLIDAR G4 model

ments on themoving surface and provide themeasurement. However, the counts of such

encoders are limited to six. Therefore, a high-precision rotary optical encoder (Model:

E6C3-C) was used.

IMU

One of the most prevalent sensors in the navigation sector is the inertial measurement

unit. It has a gyroscope and an accelerometer (sometimes also a magnetometer and

rarely also a barometer). The first is in charge of measuring acceleration, while the

second is in charge of measuring angular velocity. Because each of the measures is

represented by a three-axis coordinate system, they combine to form a six-dimensional

measurement time series stream. IMU Sensor (GY-87) with MPU-6050 chip was used

in the robot.

Figure 3.20: IMU Sensor GY-87

44

3.9.2 Controller

Raspberry Pi

Figure 3.21: Raspberry Pi 4 Model B

Path planner algorithm is implemented on a single board computer, Raspberry Pi 4

Model B. It has a high-performance 64-bit BroadcomBCM2711 quad-coreARMCortex-

A72 processor having a speed 1.5GHz along with gigabit ethernet ports, a USD-C power

supply, two USB-2 and USB-3, two Micro HDMI ports supporting two 4k displays, and

8 GB RAM. 5V DC can be supplied either from Type-C USB or via General Purpose

Input/Output (GPIO) header. It consists of a standard 40-pin GPIO header that is fully

backward-compatible with previous versions of Pi boards.

Arduino Mega

Interpretation of encoder data and transmission of Pulse Width Modulation signal to the

motor driver demands Arduino Mega 2560. It is a microcontroller board equipped with

At mega 2560 controller having more memory space and input/output pins than other

Arduino boards.

Mega supports three types of communication protocol; serial, SPI, and I2C protocol.

There are 4 hardware serial ports out of which we require 2 that are not available in

other types of Arduino boards. The first pins of the serial port are pins 0 and 1 where

45

pin 0 is Rx and Pin 1 is Tx. Rx is used to receive data and Tx is to transmit serial data.

The USB port is internally connected to these hardware serial pins therefore we cannot

upload code in Arduinomega keeping the connection of any serial modules at these pins.

Figure 3.22: Arduino mega 2560 pinout

For quick response of encoder data, hardware interrupt pins 2, 3, 18 and 19 are used for

encoders. Mega provides 4 hardware interrupt pins that interrupt the ongoing process

when a certain signal is detected on the pins and executes some other code design to

react to external stimulus. Interrupt pins are more reliable than coding on software for

the same case. There are 13 PWM pins on board including interrupt pins among which

pins 9 and 10 are used to transmit PWM signal to the Motor driver.

Arduino Shield

It is designed and manufactured in Robotics Club to house the connection between Ar-

duino and other hardware interfaces like encoder, motor driver, and Bluetooth connec-

tion. Arduino mega consists of only one 5v pin but we require three 5V pins, one for

connecting Bluetooth and rest for encoders. Therefore, 2 db9 connectors are attached to

pin 9. One connector sends encoder data to Arduino and other is used to transmit PWM

signal to motor driver.

Motor Driver

Dual-channel Cytron MDD20A was used to drive the motors. Operating between 6V

to 30V, the Cytron MDD20A allows bidirectional control of two high-power brushed

46

Figure 3.23: Arduino shield

DC motors. This motor driver can sustain 20Amp continuously for each motor without

a heatsink due to its complete discrete NMOS H-Bridge architecture. PWM and DIR

inputs can be used to control this motor driver. With input logic voltage range of 1.8V

to 12V, the driver is compatible with a broad number of controllers.

The arduino library for Cytron Motor Drivers facilitated writing PWM signals directly

Figure 3.24: Block Diagram Representation of Motor Driver I/O

using the arduino. It accepts a value from 0 to 255 and themotor speed is set accordingly.

Table 3.1: Motor Driver Truth Table

PWMx DIRx Output A
(MxA)

Output B
(MxB)

Motor x

Low - Low Low Brake
High Low High Low Forward
High High Low High Backward

47

3.9.3 Actuator

Motor

The motor used in the robot is a 24 V DC hub motor.

Figure 3.25: Motor Encoder and wheel assembly

3.9.4 Other components

Buck

It is a potentiometer that steps down the voltage of battery from 24V to operating voltage

of controllers 5V. Doing so, both controllers Raspberry Pi and Arduino Mega can be

powered by same battery.

Fuse

A fuse having current rating of 20A is used. If the motor draws more current than this

rated value it melts and breaks the circuits. Since the motor is an inductive device, its

characteristics vary with speed and loading. When there is higher resistance, it draws

more current. However, the continuous current rating of the motor driver is 20A and

48

Figure 3.26: Buck

that of the motor is 6A in unloaded condition. Therefore, A fuse of rating current 20A

limits the current drawn from the battery.

To enhance the safety further, a ceramic capacitor is used in the motor that prevents the

back current flow through the motor.

Battery

A 24V and 6000mAh LiPo battery is used to power the robot. The battery is connected

to the buck to meet the individual voltage requirement of each robot component.

Figure 3.27: Battery

3.10 Software Implementation and Architecture

The abovementioned hardwares come together and work simultaneously to make a fully

functional robot. Figure 3.28 shows the basic working architecture of the robot.

Figure 3.28: Robot Working Architecture

49

3.10.1 Arduino

Arduino mega sends control signal to actuators and processes sensor data. It reads the

encoder data in the form of counts from hardware interrupt pins 2,3, and 18, 19 via serial

communication. The data is then processed to give calculate the distance travelled by

eachwheels. In one revolutionwheels travel 1.276m and encoder publishes 1200 counts,

therefore the distance travelled by each wheel is given by Equation 3.37.

Distance travelled by wheels = 1.276× 0.5× count

1200× 16
(3.37)

Here, 16 is the gear box reduction.

3.10.2 Raspberry Pi

We have used Raspberry Pi 4 Model B with 8GB RAM as our main processor. The path

planning algorithm with ROS architecture runs on the pi and the lower level control, i.e.

generation of PWM signal with direction to motor driver is done by Arduino as men-

tioned in section 3.9.2. The main function of Raspberry pi is to MPC implementation

with CasADi. For that it needs feedback of the location it is currently in. The feedback

data is taken from the Arduino as shown in figure 3.28 through Serial communication.

It then uses the data to compute the control signal and sends to the arduino, also through

serial communication.

Now lets jump to the internal architecture and working of Pi. It has 4 cores and sup-

ports multi threading by architecture. Figure 3.30 shows the working architecture inside

Raspberry Pi main working script. Multi-threaded programs can improve performance

compared to traditional parallel programs that use multiple processes. Furthermore,

improved performance can be obtained on multiprocessor systems using threads. Inter-

thread communication is far more efficient and easier to use than inter-process commu-

nication. Because all threads within a process share the same address space, they need

not use shared memory. In our case, we need to update the robot state in real-time and

also detect the obstacle in real time. If we were to use serial processes, then there would

be lag in real-time processes. So the use of multi threading technique enabled us to plan

the trajectory in real-time with minimum lag.

50

Fi
gu
re
3.
29
:D

et
ai
le
d
R
ob
ot
A
rc
hi
te
ct
ur
e

51

Figure 3.30: Working Structure in Raspberry Pi

So, a python script was written which works on multiple threads as shown in figure

3.30. The threads are named as main thread, detector thread and arduino thread. Before

talking about the main thread, let us talk about detector and arduino thread.

Detector Thread

This thread subscribes the data from obstacle detector package in the first place. The

YD lidar package publishes the scanned data to the /scan topic which is running in the

separate thread of ROS. It continuously publishes the data and the published data is

then subscribed by the obstacle detector package. The working of the obstacle detector

package is explained in 3.3. The obstacle’s locations are published in class of classes.

So the retrieving of data from those locations is done in this thread. The retrived data is

the location of obstacles from the lidar frame of reference. This means they are in local

frame of reference and are to be converted to the global frame of reference. The data

are then converted to global frame of reference and are stored as the global variable in

real time so that it can be used by the main thread during the path planning process with

the updated obstacles locations.

Figure 3.31: Working of detector thread

52

Arduino Thread

The main function of the arduino thread is to receive the data coming from the ar-

duino through serial communication and then process it. The incoming data is in utf-8

encoding.UTF-8 is a variable-width character encoding used for electronic communica-

tion. So the first process is reading the characters until the end of line, decoding it and

then striping and splitting the string to get the wheels information. The data are then

transformed to the robot current location in global frame of reference and are published

to \odom topic. These values are updating in real time.

Figure 3.32: Working of arduino thread

IMU thread

IMU thread is basically a ROS node working in background. It is not written in the main

script. This node senses the sensor data from the IMU pins and perform IMU kinematics

to get the position, velocity and acceleration of the robot. Thus obtained data is being

continuously published in \imu topic. This data is later subscribed by EKF package.

Figure 3.33: Working of IMU node

Main thread

The main algorithm runs in this thread. This thread runs until the robot reaches the final

location and then the whole system stops. That means, it will shut main working script

and also the IMU ROS node.

We are using CasADi as our solver working environment. We can define paramaters

so that they can be updated later while running the MPC loop. The first step is to

initialise the problem with the current robot state. This is done by subscribing the

53

\odom_combined topic published by the EKF package and assigning the state parame-

ter. If the EKF node is not running then the thread directly uses the data from arduino

thread. Also the obstacles parameters are assigned with the current obstacle location

usind the data from the Detector thread. Then the solution is initialised and then solved.

After solving, we get two control inputs, heading velocity and the rate of change of ori-

entation. These values are then converted to wheels omega using kinematics and sent to

arduino through serial communication. Then again it subscribes the current robot state

and solve and send to arduino. In this mannner, the loop continues.

Figure 3.34: Main thread data architecture

54

Figure 3.35: Working of main thread

55

CHAPTER FOUR : RESULT AND DISCUSSION

4.1 Trajectory Simulations

The methodology discussed in chapter 3 was carried out for simulation in Python. The

following tables and equation summarize the problem that is being considered:

Table 4.1: Initial and final state of formulated problem

States x y θ

Initial 0 0 0

Final 10 10 π

Table 4.2: Specifications of modelled obstacles

Obstacle No. x coordinate y coordinate radius Type

1 3 5 0.5 Static, Circular

2 8 3 0.5 Static, Circular

3 7 7 0.5 Static, Circular

Minimize : J =
N∑
k=1

{
[xk−10]2+(yk−10)2+(θk−π)2+0.5∗[vk]2+0.5∗[ωk]

2+r(xk, yk)
}
.

(4.1)

Subject to:

X1 = X0

for k = 1:N

Xk+1 = Xk + f(Xk, Uk) ∗∆t

0 ≤ xk ≤ 12

0 ≤ yk ≤ 12

−1 ≤ vk ≤ 1

−1.5 ≤ ωk ≤ 1.5

h(xk, yk) > 0

Figure 4.1 shows the path generated by the algorithm. It takes around 0.5 seconds to

56

plan the trajectory for the 20 seconds time interval. Figure 4.2 show how the state of

the robot is planned to change throughout the 20 seconds. The generated trajectory tend

to avoid the obstacles and converge near to the prescribed final state. The open loop

control signal required to describe the path is depicted in figure 4.3. The control signals

are well within their upper and lower bounds. Noticeably, the trajectory is generated

such that the value of heading velocity hits±1m/smost of the time and finally both the

input signals settle to 0.

(a) t = 0s (b) t = 4.0s (c) t = 8.0s

(d) t = 12.0s (e) t = 16.0s (f) t = 20.0s

Figure 4.1: State of robot at different time stamps (Open Loop Solution 0.55 seconds)

Also, receding horizon control scheme was applied to navigate the robot from initial to

final position. The finite path-planning horizon (τ) was chosen to be 2 seconds. The

2 second timestamp is discretized into 10 subintervals of 0.2 seconds (i.e N=10 and

∆t=0.2 seconds). The following sequence is followed by the robot:

a. Generate the trajectory of next τ seconds.

b. Follow the generated trajectory for next ∆t seconds.

c. Update the current state.

d. Repeat.

57

Figure 4.2: Variation of robot states with time

Figure 4.3: Variation of control signals for unicycle robot with time

Figure 4.4 shows the state of robot at intermediate time stamps. Two different colours

58

are used to indicate the traversed path and the planned path. Similarly, Figure 4.6 and

Figure 4.7 illustrate how the robot states and control signal change throughout the 20

seconds travel. The control signals for unicycle can be manipulated to calculate the

control inputs for differential drive robot as explained in the previous sections. Figure

4.8 shows the discrete control signals in terms of left wheel velocity and right wheel

velocity of the differential drive robot. The cumulative computation time during the

simulation was just around 1.2 seconds.

(a) t = 0s (b) t = 4.0s (c) t = 8.0s

(d) t = 12.0s (e) t = 16.0s (f) t = 20.0s

Figure 4.4: State of robot at different time stamps

Figure 4.5: Path traced by the robot

59

Figure 4.6: Variation of robot states with time

Figure 4.7: Variation of control signals for unicycle robot with time

Figure 4.8: Variation of control signals for differential drive robot with time

Also, the path traced by the robot for different lengths of path planning horizon is plotted

in Figure 4.9. Figure 4.10 shows how states of the robot change with time as the horizon

length is changed. When the value of τ is kept 1 second, the robot fails to reach the goal

60

y-position. The error is negligible and change is minimal on further increasing the value

after τ = 2seconds. However, the computational cost increases drastically on further

increasing τ . This is illustrated by figure 4.11. Paths traced by the robot in other map

configurations and different end conditions are tabulated in table 4.3.

(a) τ = 1.0s (b) τ = 2.0s (c) τ = 4.0s

(d) τ = 8.0s

Figure 4.9: Path traced by robot for different values of planning horizon

(a) τ = 1.0s (b) τ = 2.0s

(c) τ = 4.0s (d) τ = 8.0s

Figure 4.10: States of robot at different time stamps for different values of planning
horizon

61

Figure 4.11: Computational time required for different lengths of planning horizon

Table 4.3: Paths traced by robot in different test cases (τ= 2sec, ∆t= 0.2sec)

SN Initial State Final State No. of Obstacles Cumulative Computation Time Figure

1 [0,0,0] [10,10,π] 4 1.29 seconds 4.12

2 [0,0,0] [10,8,0] 4 1.53 seconds 4.13

3 [1,3,π] [10,10,0] 5 1.46 seconds 4.14

(a) t = 0s (b) t = 4.0s (c) t = 8.0s

(d) t = 12.0s (e) t = 16.0s (f) t = 20.0s

Figure 4.12: State of robot at different time stamps (Table 4.3.1)

62

(a) t = 0s (b) t = 4.0s (c) t = 8.0s

(d) t = 12.0s (e) t = 16.0s (f) t = 20.0s

Figure 4.13: State of robot at different time stamps (Table 4.3.2)

(a) t = 0s (b) t = 4.0s (c) t = 8.0s

(d) t = 12.0s (e) t = 16.0s (f) t = 20.0s

Figure 4.14: State of robot at different time stamps (Table 4.3.3)

63

Figure 4.15: Extended Kalman Filter results for unicycle model. Right: Magnified plot

Figure 4.16: Estimation of orientation by sensor measurement and system dynamics

Figure 4.15 shows the result of the designed filter to estimate the states. The filter is

applied to a unicycle model having a different problem formulation whose states vary

with time as indicated by charts on the left. The chart on the right is the magnified view.

The filter has smoothened the noisy sensor measurement.

The working of the EKF can be visualized clearly from the Figure 4.16. The filter has

fused the information of sensor measurement and predicted state from system dynamics,

and given their weighted average.

64

4.2 ROS/Gazebo Simulation

(a)

(b)

Figure 4.17: Gazebo Simulation of Turtlebot3 Waffle

The algorithms simulated in the previous section is now tested against the Turtlebot3

Waffle robot in Gazebo empty world environment with cylindrical obstacles. Figure

4.17 shows two instances of the Waffle robot navigating in the environment. As it pro-

ceeds towards the goal state defined as (10, 10, π), the intermediate states are recorded

and plotted in Figures 4.18 and 4.19. The path traced by the robot in x-y coordinates

is shown in the figure 4.18 and the variation of all three states (x, y, θ) is graphed in

he Figure 4.19. Although the trajectory planner successfully leads the robot to its de-

sired final state avoiding the obstacles, there seem to be some problems in stabilizing

the robot near the goal. This is due to the inertia of the robot that the planner does not

account; the robot keeps turning in one direction unless explicitly forced to stop. It takes

65

3 redundant turns before finally reaching the goal state.

Figure 4.18: Path traced by the Turtlebot3 Waffle

Figure 4.19: Variation of Turtlebot3 Waffle robot states with time

4.3 Robot Testing

A robot frame was manufactured and all the hardware components were assembled into

a robot whose image is attached in Figure 4.20. The robot parts are as described in

the preceding chapters of the report. The robot is subjected to different test conditions

tabulated in Table 4.4.

66

Figure 4.20: Robot with all the components assembled

Table 4.4: Paths traced by robot in different test cases (τ= 2sec, ∆t= 0.2sec)

SN Initial State Final State Obstacles Figure

1 [0,0,0] [-5,0,0] (-1,0), (-2,0), (-3,0) 4.21

2 [0,0,0] [10,10,π] (2,2) 4.22

3 [0,0,0] [10,10,0] (2,2), (4,4) 4.23

Figure 4.21: Path traced by the robot from (0,0,0) to (-5,0,0)
(Table 4.4.1)

67

Figure 4.22: Path traced by the robot from (0,0,0) to (10,10,π)
(Table 4.4.2)

Figure 4.23: Path traced by the robot from (0,0,0) to (10,10,0)
(Table 4.4.3)

68

CHAPTER FIVE : CONCLUSION AND RECOMMENDATIONS

5.1 Conclusions

Robots used in simulation and physical implementation were modelled based on their

kinematic and dynamic properties. Of the modelled robots, Kinematic model of differ-

ential drive robot was used for simulation and physical implementation.

Trajectory generation using the optimal control formulations was performed using the

methodologies explained above. The formulated optimal trajectory generation problem

was transcribed as non-linear programming problem with above mentioned costs and

constraints and solved using a numerical technique to obtain optimal control signals.

The interior point solver algorithm was used to solve the nonlinear optimization prob-

lem with prediction horizon of 2 seconds discretized into 10 parts each of time step 0.2

seconds. Prediction horizon of 2 seconds was found to be a suitable trade-off between

computational cost and the steady state error. Model Predictive Control employed in

solving the optimization problem was found to be very effective and efficient. The

planner was successful in generating a trajectory from initial states to goal states, while

also satisfying all the imposed constraints and the control inputs remaining within the

prescribed limits. Simulation of robot in Gazebo environment was performed using

ROS implementation. The Waffle variant of Turtlebot3 was used for testing the results

of the trajectory planner. The path planner was able to lead the robot to goal states suc-

cessfully avoiding all the obstacles with slight overshooting of target which was later

corrected with additional control inputs.

Hardware implementation for validation of the proposed algorithm was performed by

designing and developing a differential drive robot, with appropriate sensing units, con-

trollers and actuators. While testing on real environment with real obstacles, the robot

was able to navigate to its final position and orientation while avoiding obstacles with

slight error. Obstacle detection algorithm was also fairly successful with some issues in

bright environment.

69

5.2 Recommendation

The following recommendations can be suggested for future works:

1. Optimal control algorithm can be applied to robots with other means of maneuver-

ability and handling.

2. Research on the use of other sophisticated solvers to improve the computational

efficiency of the algorithm.

3. Objective function can be redesigned to include further optimization parameters.

4. Obstacle detection and modelling algorithm can be improved to reduce the obstacle

processing time and include more geometric shapes of obstacles.

5. Castor wheel orientation can be adjusted to reduce the slippage of main driving

wheel.

70

REFERENCES

Ackerman, E. (2013). Turtlebot inventors tell us everything about the robot. IEEE

Spectrum, 26, 2013.

Adhikari, M. P., & Ruiter, A. H. d. (2020). Real-time autonomous obstacle

avoidance for fixed-wing uavs using a dynamic model. Journal of Aerospace

Engineering, 33(4), 04020027.

Amsters, R., & Slaets, P. (2019). Turtlebot 3 as a robotics education platform. In

International conference on robotics in education (rie) (pp. 170–181).

Andersson, J. (2013). A General-Purpose Software Framework for Dynamic

Optimization (PhD thesis). Arenberg Doctoral School, KU Leuven, Department

of Electrical Engineering (ESAT/SCD) and Optimization in Engineering Center,

Kasteelpark Arenberg 10, 3001-Heverlee, Belgium.

AndreasWachter, L. T. B. (2005). On the implementation of an interior-point filter

line-search algorithm for large-scale nonlinear programming. Math. Program.,

106.

Arbo, M. H., Grøtli, E. I., & Gravdahl, J. T. (2019). Casclik: Casadi-based

closed-loop inverse kinematics. arXiv preprint arXiv:1901.06713.

Arora, J. (2004). Introduction to optimum design. Elsevier.

Betts, J. T. (1998). Survey of numerical methods for trajectory optimization.

Journal of guidance, control, and dynamics, 21(2), 193–207.

Bucsuházy, K., Matuchová, E., Zvala, R., Moravcová, P., Kostíková, M., &

Mikulec, R. (2020). Human factors contributing to the road traffic accident oc-

currence. Transportation research procedia, 45, 555–561.

Cusumano, M. A. (2020). Self-driving vehicle technology: progress and

promises. Communications of the ACM , 63(10), 20–22.

Diamond, S., & Boyd, S. (2016). Cvxpy: A python-embedded modeling lan-

guage for convex optimization. The Journal of Machine Learning Research,

17(1), 2909–2913.

71

Eliwa, M., Adham, A., Sami, I., & Eldeeb, M. (2017). A critical comparison

between fast and hector slam algorithms. REST Journal on Emerging trends in

Modelling and Manufacturing, 3(2), 44–49.

Filipenko, M., & Afanasyev, I. (2018). Comparison of various slam systems

for mobile robot in an indoor environment. In 2018 international conference on

intelligent systems (is) (pp. 400–407).

Frasch, S. S. D. M., Janick V. (2015). A parallel quadratic programming method

for dynamic optimization problems. Mathematical Programming Computation,

7.

Gauss, K. F. (1963). Theory of the motion of the heavenly bodies moving about

the sun in conic section. New York: Dover.

G. Gim, P. N. (1990). An analytical model of pneumatic tires for vehicle dynamic

simulations: Part 1.pure slips. International Journal of Vehicle Design, Vol. 11,

No. 6, 589-618.

G. Gim, P. N. (1991). An analytical model of pneumatic tires for vehicle dynamic

simulations: Part 1.comprehensive slips. International Journal of Vehicle Design,

Vol. 12, No. 1, 19-39.

Gill, P. E., Murray, W., & Saunders, M. A. (2005). Snopt: An sqp algorithm for

large-scale constrained optimization. SIAM review, 47(1), 99–131.

Guizzo, E., & Ackerman, E. (2017). The turtlebot3 teacher [resources_hands on].

IEEE Spectrum, 54(8), 19–20.

Hardy, J., & Campbell, M. (2013). Contingency planning over probabilistic ob-

stacle predictions for autonomous road vehicles. IEEE Transactions on Robotics,

29(4), 913–929.

H.Pacejka. (2012). Tire and vehicle dynamics. Elsevier.

Jaroszek, P., & Trojnacki, M. (2015). Localization of the wheeled mobile robot

based on multi-sensor data fusion. Journal of Automation Mobile Robotics and

Intelligent Systems, 9.

Joseph, L. (2018). Robot operating system (ros) for absolute beginners. Springer.

72

Kalman, R. E. (1960). A new approach to linear filtering and prediction problems.

Kelly, M. P. (2017). Transcription methods for trajectory optimization: a begin-

ners tutorial. arXiv preprint arXiv:1707.00284.

Koch, O., & Weinmüller, E. (2003). The convergence of shooting methods for

singular boundary value problems. Mathematics of computation, 72(241), 289–

305.

Kohlbrecher, S., Meyer, J., von Stryk, O., & Klingauf, U. (2011, November). A

flexible and scalable slam system with full 3d motion estimation. In Proc. ieee

international symposium on safety, security and rescue robotics (ssrr).

Kushleyev, A., & Likhachev, M. (2009). Time-bounded lattice for efficient plan-

ning in dynamic environments. In 2009 ieee international conference on robotics

and automation (pp. 1662–1668).

Leyffer, S., & Mahajan, A. (2010). Nonlinear constrained optimization: methods

and software. Argonee National Laboratory, Argonne, Illinois, 60439.

Lynch, K. M., & Park, F. C. (2017). Modern robotics. Cambridge University

Press.

Lynch M., K., & C., P. F. (2013). Modern robotics mechanics, planning, and

control. Cambridge University Press.

Madås, D., Nosratinia, M., Keshavarz, M., Sundström, P., Philippsen, R., Eide-

hall, A., & Dahlén, K.-M. (2013). On path planning methods for automotive

collision avoidance. In 2013 ieee intelligent vehicles symposium (iv) (pp. 931–

937).

Meriem, M., Bouchra, C., Abdelaziz, B., Jamal, S. O. B., Nazha, C., et al. (2016).

Study of state estimation using weighted-least-squares method (wls). In 2016 in-

ternational conference on electrical sciences and technologies in maghreb (cis-

tem) (pp. 1–5).

Müller, M. A., & Worthmann, K. (2017). On quadratic stage costs for mobile

robots in model predictive control. PAMM , 17(1), 825–826.

Noga, S. (2006). Kinematics and dynamics of some selected two-wheeled mobile

73

robots. Archives of Civil and Mechanical Engineering, 6(3).

Polack, P., Altché, F., Novel, B., & de La Fortelle, A. (2017, 06). The kine-

matic bicycle model: A consistent model for planning feasible trajectories for

autonomous vehicles? In (p. 812-818). doi: 10.1109/IVS.2017.7995816

Przybyla, M. (2017). Detection and tracking of 2d geometric obstacles from lrf

data. 2017 11th International Workshop on Robot Motion and Control (RoMoCo),

135-141.

Purwin, O. (2008). Real-time trajectory generation and control for autonomous

vehicles.

Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., … others

(2009). Ros: an open-source robot operating system. In Icra workshop on open

source software (Vol. 3, p. 5).

Robo-rats locomotion: Odometry. (2001). Retrieved from

https://groups.csail.mit.edu/drl/courses/cs54-2001s/odometry.html

Rubio, V. F., Francisco, & Albert, l. (2019). A review of mobile robots: Con-

cepts, methods, theoritical framework, and application. International Journal of

Advanced Robotic Systems.

Shalev-Shwartz, S., Ben-Zrihem, N., Cohen, A., & Shashua, A. (2016). Long-

term planning by short-term prediction. arXiv preprint arXiv:1602.01580.

Subchan, S. S. (2011). A direct multiple shooting method for missile trajectory

optimization with the terminal bunt manoeuvre. IPTEK The Journal for Technol-

ogy and Science, 22(3).

Thrun, S. (2007). Simultaneous localization and mapping. In Robotics and

cognitive approaches to spatial mapping (pp. 13–41). Springer.

Tong, L. (2012). An approach for vehicle state estimation using extended kalman

filter. In International computer science conference (pp. 56–63).

Wan, E. A., & Van Der Merwe, R. (2000). The unscented kalman filter for

nonlinear estimation. In Proceedings of the ieee 2000 adaptive systems for signal

74

processing, communications, and control symposium (cat. no. 00ex373) (pp. 153–

158).

Worthmann, K., Mehrez, M.W., Zanon, M., Mann, G. K., Gosine, R. G., & Diehl,

M. (2015). Model predictive control of nonholonomic mobile robots without sta-

bilizing constraints and costs. IEEE transactions on control systems technology,

24(4), 1394–1406.

You, C., Lu, J., Filev, D., & Tsiotras, P. (2019). Advanced planning for au-

tonomous vehicles using reinforcement learning and deep inverse reinforcement

learning. Robotics and Autonomous Systems, 114, 1–18.

Ziegler, J., Bender, P., Schreiber, M., Lategahn, H., Strauss, T., Stiller, C., …

others (2014). Making bertha drive—an autonomous journey on a historic route.

IEEE Intelligent transportation systems magazine, 6(2), 8–20.

75

APPENDIX A: ARDUINO CODE

76

i n c l u d e ” Cy t ronMoto rDr ive r . h ”

i n c l u d e <Encoder . h>

i n c l u d e <math . h>

Encoder myEncoder1 (2 , 3) ;

Encoder myEncoder2 (18 , 1 9) ;

/ / Con f i gu r e t h e motor d r i v e r .

CytronMD motor1 (PWM_DIR, 9 , 1 1) ;

/ / PWM 1 = Pin 9 , DIR 1 = Pin 11 .

CytronMD motor2 (PWM_DIR, 10 , 1 2) ;

/ / PWM 2 = Pin 10 , DIR 2 = Pin 12 .

i n t myEraser = 7 ;

i n t myP r e s c a l e r = 1 ;

i n t coun t =0 ;

f l o a t cmd1=0 , cmd2=0;

c o n s t un s i gned long t imeP e r i o d = 10 ;

un s i gned long s t a r t T im e ;

long s t a r t P o s i t i o n 1 , s t a r t P o s i t i o n 2 ;

f l o a t omega1 , omega2 , d i s t a n c e 1 =0 , d i s t a n c e 2 =0;

f l o a t f a c t 1 , f a c t 2 ;

doub l e ou tpu t1 , o u t p u t 2 ;

vo id s e t u p () {

TCCR2B &= ~myEraser ; / / Changing p in f r e qu en cy 9 and 10

TCCR2B |= myP r e s c a l e r ; / / Changing p in f r e qu en cy 9 and 10

77

S e r i a l . b eg in (9 6 0 0) ;

s t a r t P o s i t i o n 1 = myEncoder1 . r e ad () ;

s t a r t P o s i t i o n 2 = myEncoder2 . r e ad () ;

s t a r t T im e = m i l l i s () ;

}

long o l d P o s i t i o n 1 = −999;

long o l d P o s i t i o n 2 = −999;

vo id loop () {

S t r i n g d a t a = S e r i a l . r e a d S t r i n g () ;

S t r i n g xva l = ge tVa lue (da t a , ’ , ’ , 0) ;

S t r i n g yva l = ge tVa lue (da t a , ’ , ’ , 1) ;

cmd1=xva l . t o F l o a t () ;

cmd2=yva l . t o F l o a t () ;

f a c t 1 = 15*1 .0575 ; / / Motor omega c o r r e c t i o n f a c t o r

f a c t 2 = −15;

motor1 . s e t Sp e ed (f a c t 1*cmd1) ;
motor2 . s e t Sp e ed (f a c t 2*cmd2) ;

un s i gned long now = m i l l i s () ;

l ong newPos i t i on1 = myEncoder1 . r e ad () ;

l ong newPos i t i on2 = myEncoder2 . r e ad () ;

i f (n ewPos i t i on1 != o l d P o s i t i o n 1) {

o l d P o s i t i o n 1 = newPos i t i on1 ;

78

d i s t a n c e 1 = (1 .276*0 .5* newPos i t i on1) / (1 2 0 0* 1 6) ;

s t a r t P o s i t i o n 1 = newPos i t i on1 ;

}

i f (n ewPos i t i on2 != o l d P o s i t i o n 2) {

o l d P o s i t i o n 2 = newPos i t i on2 ;

d i s t a n c e 2 = (1 .276*0 .5* newPos i t i on2) / (1 2 0 0* 1 6) ;
s t a r t P o s i t i o n 2 = newPos i t i on2 ;

}

S t r i n g t o p i = S t r i n g (d i s t a n c e 1)+” , ”+ S t r i n g (d i s t a n c e 2) ;

S e r i a l . p r i n t l n (t o p i) ;

}

S t r i n g ge tVa l ue (S t r i n g da t a , c h a r s e p a r a t o r , i n t i ndex)

{

i n t found = 0 ;

i n t s t r I n d e x [] = { 0 , −1 } ;

i n t maxIndex = d a t a . l e n g t h () − 1 ;

f o r (i n t i = 0 ; i <= maxIndex && found <= index ; i ++) {

i f (d a t a . cha rA t (i) == s e p a r a t o r | | i == maxIndex) {

found ++;

s t r I n d e x [0] = s t r I n d e x [1] + 1 ;

s t r I n d e x [1] = (i == maxIndex) ? i +1 : i ;

}

}

r e t u r n found > index ?

79

d a t a . s u b s t r i n g (s t r I n d e x [0] , s t r I n d e x [1]) : ” ” ;

}

80

APPENDIX B: TRAJECTORY PLANNER

81

! / u s r / b i n / py thon3

from sys impo r t p a t h

pa t h . append (r ” / home / p r a jw a l / L i b r a r i e s / Casad i_Py_Lib / ”)

from c a s a d i impo r t *
impo r t m a t p l o t l i b . p y p l o t a s p l t ;

impo r t numpy as np ;

impo r t t ime ;

c l a s s T r a j _ P l a n n e r (o b j e c t) :

d e f _ _ i n i t _ _ (s e l f , o p t i , p r b l s) :

s e l f . o p t i = o p t i ;

s e l f .N = p r b l s [’N ’] ; s e l f . d t = p r b l s [’ d t ’] ;

s e l f . No_obs = p r b l s [’ No_obs ’] ;

N = s e l f .N;

x = s e l f . o p t i . v a r i a b l e (1 , N+1) ;

y = s e l f . o p t i . v a r i a b l e (1 , N+1) ;

t h e t a = s e l f . o p t i . v a r i a b l e (1 , N+1) ;

s e l f .X = v e r t c a t (x , y , t h e t a) ;

v = s e l f . o p t i . v a r i a b l e (1 , N) ;

w = s e l f . o p t i . v a r i a b l e (1 , N) ;

s e l f .U = v e r t c a t (v ,w) ;

s e l f . X_0 = s e l f . o p t i . p a r ame t e r (3 , 1) ;

s e l f . X_f = s e l f . o p t i . p a r ame t e r (3 , 1) ;

s e l f . X_dot = s e l f . f_x_u () ;

s e l f . s u b j e c t _ t o _ d y n am i c _ c o n s t r a i n t s () ;

s e l f . s u b j e c t _ t o _ s t a t i c _ c o n s t r a i n t s () ;

s e l f . Obs_pos = s e l f . o p t i . p a r ame t e r (2 , s e l f . No_obs) ;

s e l f . Obs_rad = s e l f . o p t i . p a r ame t e r (1 , s e l f . No_obs) ;

82

c o s t _ o b s t a c l e s = s e l f . Ob s t a c l e () ;

s e l f . o p t i . min imize (1*sum2 ((x− s e l f . X_f [0])**2) +

1*sum2 ((y− s e l f . X_f [1])**2) +

1*sum2 ((t h e t a − s e l f . X_f [2])**2) +

0.5* sum1 (sum2 ((s e l f .U)**2)) +

c o s t _ o b s t a c l e s) ;

p_op t s = {” expand ” : True } ;

s _ o p t s = {” max_ i t e r ” : 1000} ;

o p t i . s o l v e r (” i p o p t ” , p_op t s , s _ o p t s) ;

d e f r e t u r n _ s o l u t i o n (s e l f , X_now , X_ref , Ob s t a c l e s ,

I n i t i a l i z a t i o n =None) :

i f no t (I n i t i a l i z a t i o n i s None) :

s e l f . o p t i . s e t _ i n i t i a l (s e l f .U, I n i t i a l i z a t i o n [’U ’]) ;

s e l f . o p t i . s e t _ i n i t i a l (s e l f .X, I n i t i a l i z a t i o n [’X ’]) ;

i f s e l f . No_obs >0:

s e l f . o p t i . s e t _ v a l u e (s e l f . Obs_pos ,

Ob s t a c l e s [0 : 2 , 0 : s e l f . No_obs]) ;

s e l f . o p t i . s e t _ v a l u e (s e l f . Obs_rad ,

Ob s t a c l e s [2 , 0 : s e l f . No_obs]) ;

s e l f . o p t i . s e t _ v a l u e (s e l f . X_0 , X_now) ;

s e l f . o p t i . s e t _ v a l u e (s e l f . X_f , X_ref) ;

s o l = s e l f . o p t i . s o l v e () ;

r e t u r n s o l ;

d e f f_x_u (s e l f) :

83

x = MX. sym (’ x ’ , 3) ;

u = MX. sym (’ u ’ , 2) ;

f_x_u = v e r t c a t (u [0]* cos (x [2]) , u [0]* s i n (x [2]) , u [1]) ;

X_do t_ac t = Func t i o n (’ X_dot ’ , [x , u] , [f_x_u]) ;

r e t u r n X_do t_ac t ;

d e f s u b j e c t _ t o _ s t a t i c _ c o n s t r a i n t s (s e l f) :

s e l f . o p t i . s u b j e c t _ t o (s e l f .X[: , 0] == s e l f . X_0) ;

s e l f . o p t i . s u b j e c t _ t o (0<= s e l f .X [:]) ;

s e l f . o p t i . s u b j e c t _ t o (s e l f .X[:] < = 1 2) ;

s e l f . o p t i . s u b j e c t _ t o (s e l f .U[0 , :] < = 1) ;

s e l f . o p t i . s u b j e c t _ t o (−1<= s e l f .U [0 , :]) ;

s e l f . o p t i . s u b j e c t _ t o (s e l f .U[1 , :] < = 1 . 5) ;

s e l f . o p t i . s u b j e c t _ t o (−1.5 <= s e l f .U [1 , :]) ;

d e f s u b j e c t _ t o _ d y n am i c _ c o n s t r a i n t s (s e l f) :

f o r k i n r ange (s e l f .N) :

s e l f . o p t i . s u b j e c t _ t o (s e l f .X[: , k+1]== s e l f .X [: , k] +

s e l f . d t *
s e l f . X_dot (s e l f .X[: , k] , s e l f .U [: , k])) ;

d e f Ob s t a c l e (s e l f) :

o b s t _ c o s t = 0 ;

i f s e l f . No_obs >0:

No_obs = s e l f . No_obs ;

Obs_pos = s e l f . Obs_pos ; Obs_rad = s e l f . Obs_rad +0 . 1 ;

f o r i i n r ange (No_obs) :

84

h = log (

((s e l f .X[0 , :] − Obs_pos [0 , i]) / Obs_rad [i])**2
+ ((s e l f .X[1 , :] − Obs_pos [1 , i]) / Obs_rad [i])**2
) ;

s e l f . o p t i . s u b j e c t _ t o (h >0) ;

o b s t _ c o s t = o b s t _ c o s t + sum2 (exp (5* exp (−h))) ;
r e t u r n o b s t _ c o s t ;

d e f main () :

o p t i = c a s a d i . Op t i () ;

d t = 0 . 2 ;

p r b l s = { ’N’ : 1 0 , ’ dt ’ : d t , ’No_obs ’ : 3 } ;

s imt ime = 20 ;

t r a j = T r a j _ P l a n n e r (o p t i , p r b l s) ;

p r i n t (t r a j . o p t i) ;

X_now = [0 , 0 , 0] ;

X_ref = [10 , 10 , p i] ;

Ob s t a c l e s = h o r z c a t ([7 , 4 , 0 . 5] , [4 , 4 , 0 . 5] , [4 , 7 , 0 . 5]) ;

#MPC loop :

i t e r = i n t (s imt ime / p r b l s [’ d t ’]) ;

X_es = h o r z c a t (X_now , DM(3 , i t e r)) ;

U_s = DM(2 , i t e r) ;

s o l = t r a j . r e t u r n _ s o l u t i o n (X_now , X_ref , Ob s t a c l e s) ;

I n i t i a l i z a t i o n ={ ’X’ : s o l . v a l u e (t r a j .X) , ’U’ : s o l . v a l u e (t r a j .U) } ;

t i c = t ime . t ime () ;

f u t u r e _ t r a j = [] ;

f o r i i n r ange (i t e r) :

85

s o l = t r a j . r e t u r n _ s o l u t i o n (X_now , X_ref ,

Ob s t a c l e s , I n i t i a l i z a t i o n) ;

u _ s e t = s o l . v a l u e (t r a j .U) ;

x _ s e t = s o l . v a l u e (t r a j .X) ;

I n i t i a l i z a t i o n = { ’X’ : x_se t , ’U’ : u _ s e t } ;

X_now = DM(X_now) + d t* t r a j . X_dot (X_now , u _ s e t [: , 0]) . f u l l () ;

X_now = x_ s e t [: , 1] ; f u t u r e _ t r a j . append (x _ s e t) ;

X_es [: , i +1] = X_now ; U_s [: , i] = u _ s e t [: , 0] ;

t o c = t ime . t ime () ; p r i n t (toc − t i c , ’ s e conds e l ap s ed ’)

x = X_es [0 , :] ;

y = X_es [1 , :] ;

t h e t a = X_es [2 , :] ;

v = U_s [0 , :] ; omega = U_s [1 , :] ;

t = [i*d t f o r i i n r ange (i t e r + 1)] ;

p r i n t (t y p e (x))

p l t . p l o t (x . T , y . T) ;

f o r i i n r ange (p r b l s [’ No_obs ’]) :

a ng l = [k /100*2* p i f o r k i n r ange (1 0 1)] ;

p l t . p l o t (Ob s t a c l e s [0 , i] + Ob s t a c l e s [2 , i]* cos (ang l) ,
Ob s t a c l e s [1 , i] + Ob s t a c l e s [2 , i]* s i n (ang l)) ;

p l t . a x i s (’ squa re ’) ; p l t . t i t l e (’ x−y t r a j e c t o r y ’) ;

p l t . s a v e f i g (’ f i g u r e _ t r a j . png ’) ; p l t . show () ;

p l t . p l o t (t , x . T , l a b e l =”x c o o r d i n a t e ”) ;

p l t . p l o t (t , y . T , l a b e l =”y c o o r d i n a t e ”) ;

p l t . p l o t (t , t h e t a . T , l a b e l =” head ing ang l e ”) ;

p l t . p l o t ([0 , 20] , [1 0 , 1 0] , ’ − − ’) ;

p l t . p l o t ([0 , 20] , [p i , p i] , ’ − − ’) ;

p l t . l e g end (l o c =” uppe r l e f t ”) ;

p l t . s a v e f i g (’ x a ndy and t h e t a . png ’) ;

86

p l t . show () ;

p l t . s t e p (t , np . append (v , v [−1]) ,

l a b e l =” v e l o c i t y (m/ s) ”) ;

p l t . s t e p (t , np . append (omega , omega [−1]) , l a b e l =” a n g u l a r v e l o c i t y (r ad / s) ”) ;

p l t . l e g end (l o c =” uppe r r i g h t ”) ; p l t . s a v e f i g (’ vandomega . png ’) ;

p l t . show () ;

p l o t _ d i f f d r i v e _ c o n t r o l (v , omega , t) ;

s h owp rog r e s s i o n (x . T , y . T , t h e t a . T , p r b l s , Ob s t a c l e s , f u t u r e _ t r a j) ;

d e f p l o t _ d i f f d r i v e _ c o n t r o l (v , omega , t) :

L = 0 . 1 5 ; #15 cm

r = 0 . 0 5 ; #5 cm

omega_r = (2*v + omega*L) / 2 / r ;
omega_l = (2*v − omega*L) / 2 / r ;
p l t . s t e p (t , np . append (omega_l , omega_l [−1]) ,

l a b e l =” a n g u l a r v e l o c i t y o f l e f t wheel (r ad / s) ”) ;

p l t . s t e p (t , np . append (omega_r , omega_r [−1]) ,

l a b e l =” a n g u l a r v e l o c i t y o f r i g h t wheel (r ad / s) ”) ;

p l t . l e g end (l o c =” uppe r r i g h t ”) ; p l t . s a v e f i g (’ omega_landr . png ’) ;

p l t . show () ;

d e f s howp rog r e s s i o n (x , y , t h e t a , p r b l s , Ob s t a c l e s , f u t u r e _ t r a j) :

L= 0 . 5 ; H=0 . 625 ;

i n t e r v a l = l e n (x . f u l l ()) / / 5 ;

f o r i i n r ange (0 , l e n (x . f u l l ()) + 1 , i n t e r v a l) :

t r i = givemexandy ((x [i] , y [i]) , L ,H, t h e t a [i]) ;

87

p l t . p l o t (x [0 : i +1] , y [0 : i + 1]) ;

f o r j i n r ange (p r b l s [’ No_obs ’]) :

a ng l = [k /100*2* p i f o r k i n r ange (1 0 1)] ;

p l t . p l o t (Ob s t a c l e s [0 , j] + Ob s t a c l e s [2 , j]* cos (ang l) ,
Ob s t a c l e s [1 , j] + Ob s t a c l e s [2 , j]* s i n (ang l)) ;

p l t . f i l l (t r i [0 , :] , t r i [1 , :] , ”m”) ;

i f i < l e n (f u t u r e _ t r a j) :

c u r r _ f u t = f u t u r e _ t r a j [i] ;

p l t . p l o t (c u r r _ f u t [0 , :] , c u r r _ f u t [1 , :]) ;

p l t . a x i s (’ squa re ’) ; p l t . s a v e f i g (’ f i g u r e ’+ s t r (i*p r b l s [’ d t ’]) + ’ . png ’) ;

p l t . show () ;

d e f givemexandy (c e n t e r _ l o c a t i o n , L ,H, p h i i) :

c e n t e r 0 = c e n t e r _ l o c a t i o n [0] ;

c e n t e r 1 = c e n t e r _ l o c a t i o n [1] ;

R = np . a r r a y ([[np . s i n (p h i i) , np . cos (p h i i)] ,

[− np . cos (p h i i) , np . s i n (p h i i)]]) ;

X=([−L / 2 , L / 2 , L / 2 , −L / 2]) ;

Y=([−H/ 2 , −H/ 2 , H/ 2 , H / 2]) ;

T = np . z e r o s ([2 , 4]) ;

f o r i i n r ange (4) :

T [: , i] = np . do t (R , np . a r r a y ([[X[i] , Y[i]]]) . T) . r e s h a p e (2) ;

x _ l ow e r _ l e f t = c e n t e r 0 +T [0 , 0] ;

x _ l owe r _ r i g h t = c e n t e r 0 +T [0 , 1] ;

x _ u p p e r _ r i g h t = c e n t e r 0 +T [0 , 2] ;

x _ u p p e r _ l e f t = c e n t e r 0 +T [0 , 3] ;

x_upper = (x _ u p p e r _ l e f t + x _ u p p e r _ r i g h t) / 2 ;

y _ l ow e r _ l e f t = c e n t e r 1 +T [1 , 0] ;

y _ l owe r _ r i g h t = c e n t e r 1 +T [1 , 1] ;

88

y _ u p p e r _ r i g h t = c e n t e r 1 +T [1 , 2] ;

y _ u p p e r _ l e f t = c e n t e r 1 +T [1 , 3] ;

y_upper = (y _ u p p e r _ l e f t + y _ u p p e r _ r i g h t) / 2 ;

x_coor =[x _ l owe r _ l e f t , x _ l owe r _ r i g h t , x_upper] ;

y_coor =[y _ l owe r _ l e f t , y _ l owe r _ r i g h t , y_upper] ;

xandy = np . a r r a y ([x_coor , y_coor]) ;

r e t u r n xandy

i f __name__ == ’ __main__ ’ :

main () ;

89

